Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T16:34:52.849Z Has data issue: false hasContentIssue false

Stability of Hagen-Poiseuille flow with superimposed rigid rotation

Published online by Cambridge University Press:  29 March 2006

P.-A. Mackrodt
Affiliation:
Institut für Strömungsmechanik der Deutschen Forschungs- und Versuchsanstalt für Luft- und Raumfahrt E.V., Aerodynamische Versuchsanstalt, Göttingen, Germany

Abstract

The linear stability of Hagen-Poiseuille flow (Poiseuille pipe flow) with superimposed rigid rotation against small three-dimensional disturbances is examined at finite and infinite axial Reynolds numbers. The neutral curve, which is obtained by numerical solution of the system of perturbation equations (derived from the Navier-Stokes equations), has been confirmed for finite axial Reynolds numbers by a few simple experiments. The results suggest that, at high axial Reynolds numbers, the amount of rotation required for destabilization could be small enough to have escaped notice in experiments on the transition to turbulence in (nominally) non-rotating pipe flow.

Type
Research Article
Copyright
© 1976 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhat, W. V. 1966 Ph.D. dissertation, University of Rochester, New York.
Christiansen, E. B. & Lemmon, H. E. 1965 Entrance region flow A.I.Ch.E. J. 11, 995.Google Scholar
Crowder, H. J. & Dalton, C. 1971 Stability of Poiseuille flow in a pipe J. Comp. Phys. 7, 12.Google Scholar
Davey, A. & Drazin, P. G. 1969 The stability of Poiseuille flow in a pipe J. Fluid Mech. 36, 209.Google Scholar
Gill, A. E. 1973 Least damped disturbance to Poiseuille flow in a circular pipe J. Fluid Mech. 61, 97.Google Scholar
Hung, W. L., Joseph, D. D. & Munson, B. R. 1972 Global stability of spiral flow. Part 2 J. Fluid Mech. 51, 593.Google Scholar
Joseph, D. D. & Carmi, S. 1969 Stability of Poiseuille flow in pipes, annuli and channels Quart. Appl. Math. 26, 575.Google Scholar
Kiessling, I. 1963 Über das Taylorsche Stabilitätsproblem bei zusätzlicher axialer Durchströmung der Zylinder. D.V.L. Rep. no. 290.Google Scholar
Leite, R. J. 1959 An experimental investigation of the stability of Poiseuille flow J. Fluid Mech. 5, 81.Google Scholar
Lessen, M. & Paillet, F. 1974 The stability of a trailing line vortex. Part 2. Viscous theory J. Fluid Mech. 65, 769.Google Scholar
Lessen, M., Sadler, S. & Liu, T. Y. 1968 Stability of pipe Poiseuille flow Phys. Fluids, 11, 1404.Google Scholar
Ludwieg, H. 1960 Stabilität der Strömung in einem zylindrischen Ringraum Z. Flugwiss. 8, 135.Google Scholar
Ludwieg, H. 1961 Ergänzung zu der Arbeit “Stabilität der Strömung in einem zylindrischen Ringraum” Z. Flugwiss. 9, 359.Google Scholar
Ludwieg, H. 1964 Experimentelle Nachprüfung der Stabilitätstheorien für reibungsfreie Strömungen mit schraubenförmigen Stromlinien Z. Flugwiss. 12, 304.Google Scholar
Mackrodt, P.-A. 1967 Spiralströmungen im zylindrischen Ringraum hinter Leiträdern Z. Flugwiss. 15, 335.Google Scholar
Mackrodt, P.-A. 1971 Stabilität von Hagen-Poiseuille-Strömungen mit überlagerter starrer Rotation. Rep. MPI Ström. Forsch. u. Aerodyn. Vers. Anst., Göttingen, no. 55.Google Scholar
Mackrodt, P.-A. 1973 Stabilität der Hagen-Poiseuille-Strömung mit überlagerter starrer Rotation bei sehr hohen Reynoldszahlen. DFVLR-AVA, Göttingen Rep. no. 25173A25.Google Scholar
Metcalfe, R. W. & Orszag, S. A. 1973 Numerical calculation of the linear stability of pipe flows Bull. Am. Phys. Sci. 18, 11.Google Scholar
Mott, J. E. & Joseph, D. D. 1968 Stability of parallel flow between concentric cylinders Phys. Fluids, 11, 2065.Google Scholar
Nagib, H. M., Lavan, Z., Fejer, A. A. & Wolf, L. 1971 Stability of pipe-flow with superposed solid body rotation Phys. Fluids, 14, 766.Google Scholar
Pedley, T. J. 1968 On the instability of rapidly rotating shear flows to non-axisymmetric disturbances J. Fluid Mech. 31, 603.Google Scholar
Pedley, T. J. 1969 On the instability of viscous flow in a rapidly rotating pipe J. Fluid Mech. 35, 97.Google Scholar
Reshotko, E. 1958 Experimental study of the stability of pipe flow. I. Establishment of an axially symmetric Poiseuille flow. Jet Propulsion Lab., Caltech Prog. Rep. no. 20-364.Google Scholar
Reynolds, O. 1883 An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and of the law of resistance in parallel channels. Phil Trans. A 174, 935. (See also Papers on Mechanical and Physical Subjects, vol. 2, p. 51. Cambridge University Press.)Google Scholar
Reynolds, O. 1895 On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. A 186, 123. (See also Papers on Mechanical and Physical Subjects, vol. 2, p. 535. Cambridge University Press.)Google Scholar
Salwen, H. & Grosch, C. E. 1972 Stability of Poiseuille flow in a pipe of circular cross-section J. Fluid Mech. 54, 93.Google Scholar
Schiller, L. 1922 Untersuchungen über laminare und turbulente Strömung. Forsch. Geb. Ing. Wes. H. no. 248.Google Scholar
Sexl, Th. 1927a Stabilitätsfragen der Poiseuilleschen und Couetteschen Strömung Ann. Phys. (Leipzig), 83, 835.Google Scholar
Sexl, Th. 1927b Über dreidimensionale Störungen der Poiseuilleschen Strömung Ann. Phys. (Leipzig), 84, 807.Google Scholar
Sparrow, E. M., Lin, S. H. & Lundgren, T. S. 1964 Flow development in the hydro-dynamic entrance region of tubes and ducts Phys. Fluids, 7, 338.Google Scholar
Strohl, J. 1969 Hydrodynamic stability of Poiseuille flow in a rotating pipe. M.Sc. thesis, Illinois Institute of Technology, Chicago.
Tatsumi, T. 1952 Stability of the laminar inlet-flow prior to the formation of Poiseuille régime. J. Phys. Soc. Japan, 7, 489, 495.Google Scholar
Wedemeyer, E. 1967 Einfluss der Zähigkeit auf die Stabilität der Strömung in einem schmalen Ringraum mit zusätzlichem axialem Durchfluss. AVA Rep. Göttingen, no. 67 A 34.Google Scholar
Wedemeyer, E. 1969 Stabilität spiraliger Strömungen in einem zylindrischen Ringraum. Rep. MPI Ström. Forsch. u. Aerodyn. Vers. Anst., Göttingen, no. 44.Google Scholar