Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T07:16:02.507Z Has data issue: false hasContentIssue false

Stability of biomimetic membranes in DC electric fields

Published online by Cambridge University Press:  12 July 2012

Jacopo Seiwert
Affiliation:
School of Engineering, Brown University, Providence, RI 02912, USA
Michael J. Miksis
Affiliation:
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60202, USA
Petia M. Vlahovska*
Affiliation:
School of Engineering, Brown University, Providence, RI 02912, USA
*
Email address for correspondence: [email protected]

Abstract

The interface defining a biological cell is a thin membrane, which acts as a leaky capacitor. We investigate the influence of capacitance and conductivity on the stability of a planar membrane subjected to a DC electric field. We develop a zero-thickness model of the membrane, in which the bilayer finite thickness is effectively accounted for by membrane electro-mechanical properties such as bending modulus, capacitance and conductance. The linear stability analysis shows that membrane conductance and asymmetry in the embedding electrolyte solutions destabilize the interface. However, the capacitive charging acts to stabilize the system under conditions where an ordinary fluid–fluid interface is unstable.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brochard, F. & Lennon, J. F. 1975 Frequency spectrum of the flicker phenomenon in erythrocytes. J. Phys. (France) 36, 10351047.CrossRefGoogle Scholar
2. DeBruin, K. & Krassowska, W. 1999 Modeling electroporation in a single cell. Part 1. Effects of field strength and rest potential. Biophys. J. 77, 12131224.CrossRefGoogle Scholar
3. Dimova, R., Bezlyepkina, N., Jordo, M. D., Knorr, R. L., Riske, K. A., Staykova, M., Vlahovska, P. M., Yamamoto, T., Yang, P. & Lipowsky, R. 2009 Vesicles in electric fields: some novel aspects of membrane behaviour. Soft Matt. 5, 32013212.CrossRefGoogle Scholar
4. Dimova, R., Riske, K. A., Aranda, S., Bezlyepkina, N., Knorr, R. L. & Lipowsky, R. 2007 Giant vesicles in electric fields. Soft Matt. 3, 817827.CrossRefGoogle ScholarPubMed
5. Evans, E. & Rawicz, W. 1990 Entropy driven tension and bending elasticity in condensed-fluid membranes. Phys. Rev. Lett. 64, 20942097.CrossRefGoogle ScholarPubMed
6. Gambhire, P. & Thaokar, R. M. 2010 Electrohydrodynamic instabilities at interfaces subjected to alternating electric field. Phys. Fluids 22, 064103.CrossRefGoogle Scholar
7. Helfrich, W. 1973 Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28c, 693703.CrossRefGoogle Scholar
8. Kummrow, M. & Helfrich, W. 1991 Deformation of giant lipid vesicles by electric fields. Phys. Rev. A 44, 83568360.CrossRefGoogle ScholarPubMed
9. Lacoste, D., Lagomarsino, M. C. & Joanny, J. F. 2007 Fluctuations of a driven membrane in an electrolyte. Europhys. Lett. 77, 18006.CrossRefGoogle Scholar
10. Lacoste, D., Menon, G. I., Bazant, M. Z. & Joanny, J. F. 2009 Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane. Eur. Phys. J. E 28, 243264.CrossRefGoogle Scholar
11. Leonetti, M., Dubois-Violette, E. & Homble, F. 2004 Pattern formation of stationary transcellular ionic currents in Fucus. PNAS 101, 1024310248.CrossRefGoogle ScholarPubMed
12. Melcher, J. R. & Smith, C. 1969 Electrohydrodynamic charge relaxation and interfacial perpendicular-field instability. Phys. Fluids 12, 778790.CrossRefGoogle Scholar
13. Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics: a review of role of interfacial shear stress. Annu. Rev. Fluid Mech. 1, 111146.CrossRefGoogle Scholar
14. Needham, D. & Hochmuth, R. M. 1989 Electromechanical permeabilization of lipid vesicles. role of membrane tension and compressibility. Biophys. J. 55, 10011009.CrossRefGoogle ScholarPubMed
15. Pease, L. F. & Russel, W. B. 2002 Linear stability analysis of thin leaky dielectric films subjected to electric fields. J. Non-Newtonian Fluid Mech. 102, 233250.CrossRefGoogle Scholar
16. Prost, J., Manneville, J.-B. & Bruinsma, R. 1998 Fluctuation-magnification of non-equilibrium membranes near a wall. Eur. Phys. J. B 1, 465480.CrossRefGoogle Scholar
17. Riske, K. A. & Dimova, R. 2005 Electro-deformation and poration of giant vesicles viewed with high temporal resolution. Biophys. J. 88, 11431155.CrossRefGoogle ScholarPubMed
18. Roberts, S. A. & Kumar, S. 2009 AC electrohydrodynamic instabilities in thin liquid films. J. Fluid Mech. 631, 255279.CrossRefGoogle Scholar
19. Salipante, P. F., Knorr, R., Dimova, R. & Vlahovska, P. M. 2012 Electrodeformation method for measuring the capacitance of bilayer membranes. Soft Matt. 8, 38103816.CrossRefGoogle Scholar
20. Saville, D. A. 1997 Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29, 2764.CrossRefGoogle Scholar
21. Schaffer, E., Thurn-Albrecht, T., Russell, T. & Steiner, U. 2000 Electrically induced structure formation and pattern transfer. Nature 603, 874877.CrossRefGoogle Scholar
22. Schwalbe, J. 2010 Dynamics and stability of lipid bilayer membranes in viscous flow and electric fields. PhD thesis, Northwestern University.Google Scholar
23. Schwalbe, J. T., Vlahovska, P. M. & Miksis, M. J. 2011 Lipid membrane instability driven by capacitive charging. Phys. Fluids 23, 04170.CrossRefGoogle Scholar
24. Seifert, U. 1995 The concept of effective tension for fluctuating vesicles. Z. Phys. B 97, 299309.CrossRefGoogle Scholar
25. Seifert, U. 1999 Fluid membranes in hydrodynamic flow fields: formalism and an application to fluctuating quasispherical vesicles. Eur. Phys. J. B 8, 405415.CrossRefGoogle Scholar
26. Seifert, U. & Langer, S. 1993 Viscous modes of fluid bilayer membranes. Europhys. Lett. 23, 7176.CrossRefGoogle Scholar
27. Sens, P. & Isambert, H. 2002 Undulation instability of lipid membranes under an electric field. Phys. Rev. Lett. 88, 128102.CrossRefGoogle ScholarPubMed
28. Taylor, G. I. & McEwan, A. D. 1965 The stability of a horizontal fluid interface in a vertical electric field. J. Fluid Mech. 22, 115.CrossRefGoogle Scholar
29. Teissie, J., Golzio, M. & Rols, M. P. 2005 Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. Biochimica et Biophysica Acta (BBA): General 1724, 270280.CrossRefGoogle ScholarPubMed
30. Thaokar, R. M. & Kumaran, V. 2005 Electrohydrodynamic instability of the interface between two fluids confined in a channel. Phys. Fluids 17, 084104.CrossRefGoogle Scholar
31. Weaver, J. C. & Chizmadzhev, Y. A. 1996 Theory of electroporation: a review. Bioelectrochem. Bioenerg 41, 135160.CrossRefGoogle Scholar
32. Wu, N. & Russel, W. B. 2009 Micro- and nano-patterns created via electrohydrodynamic instabilities. Nanotoday 4, 180.CrossRefGoogle Scholar
33. Ziebert, F., Bazant, M. Z. & Lacoste, D. 2010 Effective zero-thickness model for a conductive membrane driven by an electric field. Phys. Rev. E 81, 031912.CrossRefGoogle ScholarPubMed
34. Ziebert, F. & Lacoste, D. 2010 A Poisson–Boltzmann approach for a lipid membrane in an electric field. New J. Phys. 12, 095002.CrossRefGoogle Scholar
35. Ziebert, F. & Lacoste, D. 2011 A planar lipid bilayer in an electric field: membrane instability flow field, and electrical impedance. In Advances in Planar Lipid Bilayers and Liposomes (ed. Iglic, A. ), vol. 14, pp. 63, 95. Elsevier.CrossRefGoogle Scholar