Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T16:27:36.590Z Has data issue: false hasContentIssue false

Stability and hysteresis of Faraday waves in Hele-Shaw cells

Published online by Cambridge University Press:  24 May 2019

Jing Li
Affiliation:
State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
Xiaochen Li
Affiliation:
School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, PR China
Shijun Liao*
Affiliation:
State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China State Key Laboratory of Plateau Ecology and Agriculture, Xining 810018, PR China School of Hydraulic and Electric Engineering, Qinghai University, Xining 810018, PR China
*
Email address for correspondence: [email protected]

Abstract

The instability of Faraday waves in Hele-Shaw cells is investigated experimentally and theoretically. A novel hydrodynamic model involving capillary action is proposed to capture the variation of the dynamic contact line between two close walls of narrow containers. The amplitude equations are derived from the gap-averaged model. By means of Lyapunov’s first method, a good prediction of the onset threshold of forcing acceleration is obtained, which shows the model’s validity for addressing the stability problem for Faraday waves in Hele-Shaw cells. It is found that the effect of the dynamic contact line is much greater than that of Poiseuille assumption of velocity profile for the cases under investigation. A new dispersion relation is obtained, which agrees well with experimental data. However, we highly recommend the conventional dispersion relation for gravity–capillary waves, which can generally meet common needs. Surface tension is found to be a key factor of interface flows in Hele-Shaw cells. According to our experimental observations, a liquid film is found on the front wall of the Hele-Shaw cell when the wave is falling. As a property of the friction coefficient from molecular kinetics, wet and dry plates show different wetting procedures. Unlike some authors of previous publications, we attribute the hysteresis to the out-of-plane interface shape rather than to detuning, i.e. the difference between natural frequency and response frequency.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdolali, A., Kirby, J. T. & Bellotti, G. 2015 Depth-integrated equation for hydro-acoustic waves with bottom damping. J. Fluid Mech. 766, R1.10.1017/jfm.2015.37Google Scholar
Afkhami, S. & Renardy, Y. 2013 A volume-of-fluid formulation for the study of co-flowing fluids governed by the Hele-Shaw equations. Phys. Fluids 25, 082001.10.1063/1.4817374Google Scholar
Alam, M.-R., Liu, Y. & Yue, D. K. P. 2011 Attenuation of short surface waves by the sea floor via nonlinear sub-harmonic interaction. J. Fluid Mech. 689, 529540.10.1017/jfm.2011.448Google Scholar
Bechhoefer, J., Ego, V., Manneville, S. & Johnson, B. 1995 An experimental study of the onset of parametrically pumped surface waves in viscous fluids. J. Fluid Mech. 288, 325350.10.1017/S0022112095001169Google Scholar
Benjamin, T. B. & Ursell, F. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225, 505515.Google Scholar
Besson, T., Edwards, W. S. & Tuckerman, L. S. 1996 Two-frequency parametric excitation of surface waves. Phys. Rev. E 54, 507513.Google Scholar
Beyer, J. & Friedrich, R. 1994 Faraday instability: linear analysis for viscous fluids. Phys. Rev. E 51, 11621168.10.1103/PhysRevE.51.1162Google Scholar
Blake, T. D. 1993 Dynamic contact angles and wetting kinetics. In Wettability (ed. Berg, J. C.), p. 251. Marcel Dekker.Google Scholar
Blake, T. D. 2006 The physics of moving wetting lines. J. Colloid Interface Sci. 299, 113.10.1016/j.jcis.2006.03.051Google Scholar
Bosch, E., Lambermont, H. & van de Water, W. 1994 Average patterns in Faraday waves. Phys. Rev. E 49, R3580R3583.Google Scholar
Bronfort, A. & Caps, H. 2012 Faraday instability at foam–water interface. Phys. Rev. E 86 (6), 066313.10.1103/PhysRevE.86.066313Google Scholar
Cerda, E. & Tirapegui, E. 1997 Faraday’s instability for viscous fluids. Phys. Rev. Lett. 78 (5), 859862.10.1103/PhysRevLett.78.859Google Scholar
Chen, P. & Viñals, J. 1999 Amplitude equation and pattern selection in Faraday waves. Phys. Rev. E 60, 559570.Google Scholar
Chouke, R. L., van Meurs, P. & van der Poel, C. 1959 The instability of slow, immiscible, viscous liquid–liquid displacements in permeable media. Trans. AIME 216, 188194.Google Scholar
Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 8511112.10.1103/RevModPhys.65.851Google Scholar
Douady, S. & Fauve, S. 1988 Pattern selection in Faraday instability. Europhys. Lett. 6, 221226.10.1209/0295-5075/6/3/006Google Scholar
Edwards, W. S. & Fauve, S. 1993 Parametrically excited quasicrystalline surface waves. Phys. Rev. E 47, R788R791.10.1103/PhysRevE.47.R788Google Scholar
Edwards, W. S. & Fauve, S. 1994 Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech. 278, 123148.10.1017/S0022112094003642Google Scholar
Faraday, M. 1831 On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 121, 299340.Google Scholar
Gondret, P. & Rabaud, M. 1997 Shear instability of two-fluid parallel flow in a Hele-Shaw cell. Phys. Fluids 9, 32673274.Google Scholar
Hamraoui, A., Thuresson, K., Nylander, T. & Yaminsky, V. 2000 Can a dynamic contact angle be understood in terms of a friction coefficient? J. Colloid Interface Sci. 226, 199204.10.1006/jcis.2000.6830Google Scholar
Jiang, L., Perlin, M. & Schultz, W. W. 2004 Contact-line dynamics and damping for oscillating free surface flows. Phys. Fluids 16 (3), 748758.10.1063/1.1644151Google Scholar
Jiang, L., Ting, C.-L., Perlin, M. & Schultz, W. W. 1996 Moderate and steep Faraday waves: instabilities, modulation and temporal asymmetries. J. Fluid Mech. 329, 275307.Google Scholar
Johansson, P. & Hess, B. 2018 Molecular origin of contact line friction in dynamic wetting. Phys. Rev. Fluids 3 (7), 074201.10.1103/PhysRevFluids.3.074201Google Scholar
Kityk, A. V., Embs, J., Mekhonoshin, V. V. & Wagner, C. 2005 Spatiotemporal characterization of interfacial Faraday waves by means of a light absorption technique. Phys. Rev. E 72, 036209.10.1103/PhysRevE.72.036209Google Scholar
Kudrolli, A. & Gollub, J. P. 1996 Patterns and spatiotemporal chaos in parametrically forced surface waves: a systematic survey at large aspect ratio. Physica D 97, 133154.10.1016/0167-2789(96)00099-1Google Scholar
Kudrolli, A., Pier, B. & Gollub, J. P. 1998 Superlattice patterns in surface waves. Physica D 123, 99111.10.1016/S0167-2789(98)00115-8Google Scholar
Kumar, K. 1996 Linear theory of Faraday instability in viscous liquids. Proc. R. Soc. Lond. A 452, 11131126.Google Scholar
Kumar, K. & Tuckerman, L. S. 1994 Parametric instability of the interface between two fluids. J. Fluid Mech. 279, 4968.10.1017/S0022112094003812Google Scholar
Lagrée, P.-Y., Staron, L. & Popinet, S. 2011 The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a 𝜇(I)-rheology. J. Fluid Mech. 686, 378408.10.1017/jfm.2011.335Google Scholar
Li, J., Li, X., Chen, K., Xie, B. & Liao, S. 2018a Faraday waves in a Hele-Shaw cell. Phys. Fluids 30, 042106.Google Scholar
Li, X., Li, J., Li, X., Liao, S. & Chen, C. 2019 Effect of width on the properties of Faraday waves in Hele-Shaw cells. Sci. China Phys. Mech. Astron. 62, 974711.Google Scholar
Li, X., Li, X. M. & Liao, S. 2016 Pattern transition of two-dimensional Faraday waves at an extremely shallow depth. Sci. China Phys. Mech. Astron. 59, 114712.Google Scholar
Li, X., Li, X. & Liao, S. 2018b Observation of two coupled Faraday waves in a vertically vibrating Hele-Shaw cell with one of them oscillating horizontally. Phys. Fluids 30, 012108.Google Scholar
Li, X., Xu, D. & Liao, S. 2014 Observations of highly localized oscillons with multiple crests and troughs. Phys. Rev. E 90, 031001.Google Scholar
Li, X., Yu, Z. & Liao, S. 2015 Observation of two-dimensional Faraday waves in extremely shallow depth. Phys. Rev. E 92, 033014.10.1103/PhysRevE.92.033014Google Scholar
Matthiessen, L. 1868 Akustische versuche, die kleinsten transversalwellen der flüssigkeiten betreffend. Ann. Phys. 210, 107117.Google Scholar
McLean, J. W. & Saffman, P. G. 1981 The effect of the surface tension on the shape of fingers in a Hele-Shaw cell. J. Fluid Mech. 102, 455469.10.1017/S0022112081002735Google Scholar
Meron, E. 1987 Parametric excitation of multimode dissipative systems. Phys. Rev. A 35, 48924895.10.1103/PhysRevA.35.4892Google Scholar
Miles, J. 1999 On Faraday resonance of a viscous liquid. J. Fluid Mech. 395, 321325.Google Scholar
Miles, J. & Henderson, D. 1990 Parametrically forced surface waves. Annu. Rev. Fluid Mech. 22, 143165.10.1146/annurev.fl.22.010190.001043Google Scholar
Milewski, P. A., Galeano-Rios, C. A., Nachbin, A. & Bush, J. W. M. 2015 Faraday pilot-wave dynamics: modelling and computation. J. Fluid Mech. 778, 361388.Google Scholar
Milner, S. T. 1991 Square patterns and secondary instabilities in driven capillary waves. J. Fluid Mech. 225, 81100.10.1017/S0022112091001970Google Scholar
Müller, H. W., Wittmer, H., Wagner, C., Albers, J. & Knorr, K. 1997 Analytic stability theory for Faraday waves and the observation of the harmonic surface response. Phys. Rev. Lett. 78, 23572360.10.1103/PhysRevLett.78.2357Google Scholar
Nayfeh, A. H. 1993 Introduction to Perturbation Techniques. Wiley.Google Scholar
Park, C.-W. & Homsy, G. M. 1984 Two-phase displacement in Hele-Shaw cells: theory. J. Fluid Mech. 139, 291308.Google Scholar
Périnet, N., Falcon, C., Chergui, J. & Juric, D. 2016 Hysteretic Faraday waves. Phys. Rev. E 93, 063114.10.1103/PhysRevE.93.063114Google Scholar
Périnet, N., Juric, D. & Tuckerman, L. S. 2009 Numerical simulation of Faraday waves. J. Fluid Mech. 635, 126.10.1017/S0022112009007551Google Scholar
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190(2), 572600.10.1016/S0021-9991(03)00298-5Google Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.Google Scholar
Pototsky, A. & Bestehorn, M. 2016 Faraday instability of a two-layer liquid film with a free upper surface. Phys. Rev. Fluids 1, 023901.10.1103/PhysRevFluids.1.023901Google Scholar
Pradenas, B., Araya, I., Clerc, M. G., Falcón, C., Gandhi, P. & Knobloch, E. 2017 Slanted snaking of localized Faraday waves. Phys. Rev. Fluids 2 (6), 064401.10.1103/PhysRevFluids.2.064401Google Scholar
Rajchenbach, J. & Clamond, D. 2015 Faraday waves: their dispersion relation, nature of bifurcation and wave number selection revisited. J. Fluid Mech. 777, R2.10.1017/jfm.2015.382Google Scholar
Rajchenbach, J., Leroux, A. & Clamond, D. 2011 New standing solitary waves in water. Phys. Rev. Lett. 107, 024502.10.1103/PhysRevLett.107.024502Google Scholar
Rayleigh, Lord VII 1883 On the crispations of fluid resting upon a vibrating support. Lond. Edinb. Dubl. Phil. Mag. 16, 5058.10.1080/14786448308627392Google Scholar
Saffman, P. G. & Taylor, G. I. 1958 The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 19580085.Google Scholar
Schwartz, L. 1986 Stability of Hele-Shaw flows: the wetting-layer effect. Phys. Fluids 29, 30863087.10.1063/1.865997Google Scholar
Tadjbakhsh, I. & Keller, J. B. 1960 Standing surface waves of finite amplitude. J. Fluid Mech. 8, 442451.10.1017/S0022112060000724Google Scholar
Talib, E., Jalikop, S. V. & Juel, A. 2007 The influence of viscosity on the frozen wave instability: theory and experiment. J. Fluid Mech. 584, 4568.10.1017/S0022112007006283Google Scholar
Ubal, S., Giavedoni, M. D. & Saita, F. A. 2003 A numerical analysis of the influence of the liquid depth on two-dimensional Faraday waves. Phys. Fluids 15, 30993113.Google Scholar
Voinov, O. V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11 (5), 714721.10.1007/BF01012963Google Scholar
Voué, M., Valignat, M. P., Oshanin, G. & Cazabat, A. M. 1999 Dissipation processes at the mesoscopic and molecular scale. The case of polymer films. Langmuir 15 (4), 15221527.Google Scholar
Voué, M., Valignat, M. P., Oshanin, G., Cazabat, A. M. & De Coninck, J. 1998 Dynamics of spreading of liquid microdroplets on substrates of increasing surface energies. Langmuir 14, 59515958.10.1021/la9714115Google Scholar
Wu, J., Keolian, R. & Rudnick, I. 1984 Observation of a nonpropagating hydrodynamic soliton. Phys. Rev. Lett. 52, 14211424.10.1103/PhysRevLett.52.1421Google Scholar
Zhang, W. & Viñals, J. 1997 Pattern formation in weakly damped parametric surface waves. J. Fluid Mech. 336, 301330.Google Scholar