Hostname: page-component-f554764f5-68cz6 Total loading time: 0 Render date: 2025-04-14T16:14:17.735Z Has data issue: false hasContentIssue false

Stability and dynamics of the laminar flow past rectangular prisms

Published online by Cambridge University Press:  03 April 2025

Alessandro Chiarini*
Affiliation:
Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34, Milano 20156, Italy
Edouard Boujo*
Affiliation:
Laboratory of Fluid Mechanics and Instabilities, École Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland
*
Corresponding authors: Alessandro Chiarini, [email protected]; Edouard Boujo, [email protected]
Corresponding authors: Alessandro Chiarini, [email protected]; Edouard Boujo, [email protected]

Abstract

The laminar flow past rectangular prisms is studied in the space of length-to-height ratio ($1 \leqslant L/H \leqslant 5$), width-to-height ratio ($1.2 \leqslant W/H \leqslant 5$) and Reynolds number ($Re \lessapprox 700$); $L$ and $W$ are the streamwise and cross-flow dimensions of the prisms. The primary bifurcation is investigated with linear stability analysis. For large $W/L$, an oscillating mode breaks the top/bottom planar symmetry. For smaller $W/L$, the flow becomes unstable to stationary perturbations and the wake experiences a static deflection, vertical for intermediate $W/L$ and horizontal for small $W/L$. Weakly nonlinear analysis and nonlinear direct numerical simulations are used for $L/H = 5$ and larger $Re$. For $W/H = 1.2$ and 2.25, the flow recovers the top/bottom planar symmetry but loses the left/right one, via supercritical and subcritical pitchfork bifurcations, respectively. For even larger $Re$, the flow becomes unsteady and oscillates around either the deflected (small $W/H$) or the non-deflected (intermediate $W/H$) wake. For intermediate $W/H$ and $Re$, a fully symmetric periodic regime is detected, with hairpin vortices shed from the top and bottom leading-edge (LE) shear layers; its triggering mechanism is discussed. At large $Re$ and for all $W/H$, the flow approaches a chaotic state characterised by the superposition of different modes: shedding of hairpin vortices from the LE shear layers, and wake oscillations in the horizontal and vertical directions. In some portions of the parameter space the different modes synchronise, giving rise to periodic regimes also at relatively large $Re$.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Barkley, D. & Henderson, R.D. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.Google Scholar
Blackburn, H.M. & Lopez, J.M. 2003 On three-dimensional quasiperiodic Floquet instabilities of two-dimensional bluff body wakes. Phys. Fluids 15 (8), L57L60.Google Scholar
Blackburn, H.M., Marques, F. & Lopez, J.M. 2005 Symmetry breaking of two-dimensional time-periodic wakes. J. Fluid Mech. 522, 395411.Google Scholar
Blackburn, H.M. & Sheard, G.J. 2010 On quasiperiodic and subharmonic Floquet wake instabilities. Phys. Fluids 22 (3), 031701.Google Scholar
Bohorquez, P., Sanmiguel-Rojas, E., Sevilla, A., Jiménez-González, J.I. & Martínez-Bazán, C. 2011 Stability and dynamics of the laminar wake past a slender blunt-based axisymmetric body. J. Fluid Mech. 676, 110144.Google Scholar
Bruno, L., Salvetti, M.V. & Ricciardelli, F. 2014 Benchmark on the aerodynamics of a rectangular 5:1 cylinder: an overview after the first four years of activity. J. Wind Engng Ind. Aerodyn. 126, 87106.Google Scholar
Chaurasia, H.K. & Thompson, M.C. 2011 Three-dimensional instabilities in the boundary-layer flow over a long rectangular plate. J. Fluid Mech. 681, 411433.Google Scholar
Chiarini, A., Gatti, D., Cimarelli, A. & Quadrio, M. 2022 a Structure of turbulence in the flow around a rectangular cylinder. J. Fluid Mech. 946, A35.Google Scholar
Chiarini, A. & Quadrio, M. 2021 The turbulent flow over the BARC rectangular cylinder: a DNS study. Flow Turbul. Combust. 107 (4), 875899.Google Scholar
Chiarini, A. & Quadrio, M. 2022 The importance of corner sharpness in the BARC test case: a numerical study. Wind Struct. 34 (1), 4358.Google Scholar
Chiarini, A., Quadrio, M. & Auteri, F. 2021 Linear stability of the steady flow past rectangular cylinders. J. Fluid Mech. 929, A36.Google Scholar
Chiarini, A., Quadrio, M. & Auteri, F. 2022 b An almost subharmonic instability in the flow past rectangular cylinders. J. Fluid Mech. 950, A20.CrossRefGoogle Scholar
Chiarini, A., Quadrio, M. & Auteri, F. 2022 c A new scaling for the flow instability past symmetric bluff bodies. J Fluid Mech. 936, R2.Google Scholar
Chiarini, A., Quadrio, M. & Auteri, F. 2022 d On the frequency selection mechanism of the low- Re flow around rectangular cylinders. J. Fluid Mech. 933, A44.Google Scholar
Choi, H., Jeon, W.-P. & Kim, J. 2008 Control of flow over a bluff body. Ann. Rev. Fluid Mech. 40 (1), 113139.CrossRefGoogle Scholar
Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37 (1), 357392.Google Scholar
Citro, V., Siconolfi, L., Fabre, D., Giannetti, F. & Luchini, P. 2017 Stability and sensitivity analysis of the secondary instability in the sphere wake. AIAA J. 55 (11), 36613668.Google Scholar
Ducimetière, Y.-M., Boujo, E. & Gallaire, F. 2024 Noise-induced transitions past the onset of a steady symmetry-breaking bifurcation: the case of the sudden expansion. Phys. Rev. Fluids 9 (5), 053905.Google Scholar
Fabre, D., Auguste, F. & Magnaudet, J. 2008 Bifurcations and symmetry breaking in the wake of axisymmetric bodies. Phys. Fluids 20 (5), 051702.Google Scholar
Giannetti, F., Camarri, S. & Luchini, P. 2010 Structural sensitivity of the secondary instability in the wake of a circular cylinder. J. Fluid Mech. 651, 319337.CrossRefGoogle Scholar
Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167197.CrossRefGoogle Scholar
Hecht, F. 2012 New development in freefem++. J. Numer. Maths 20 (3–4), 251266.Google Scholar
Hourigan, K., Thompson, M.C. & Tan, B.T. 2001 Self-sustained oscillations in flows around long blunt plates. J. Fluids Struct. 15 (3), 387398.Google Scholar
Inoue, O. & Sakuragi, A. 2008 Vortex shedding from a circular cylinder of finite length at low Reynolds numbers. Phys. Fluids 20 (3), 033601.CrossRefGoogle Scholar
Iooss, G. & Joseph, D.D. 1990 Elementary Stability and Bifurcation Theory. Springer.Google Scholar
Jackson, C.P. 1987 A finite-element study of the onset of vortex shedding in flow past variously shaped bodies. J. Fluid Mech. 182, 2345.Google Scholar
Johnson, T.A. & Patel, V.C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 1970.Google Scholar
Klotz, L., Goujon-Durand, S., Rokicki, J. & Wesfreid, J.E. 2014 Experimental investigation of flow behind a cube for moderate Reynolds numbers. J. Fluid Mech. 750, 7398.CrossRefGoogle Scholar
Kuznetsov, Y. 2004 Elements of Applied Bifurcation Theory. 3rd edn. Springer-Verlag.Google Scholar
Li, X.-B., Demange, S., Chen, G., Wang, J.-B., Liang, X.-F., Schmidt, O.T. & Oberleithner, K. 2024 Linear stability and spectral modal decomposition of three-dimensional turbulent wake flow of a generic high-speed train. J. Fluid Mech. 1000, A64.Google Scholar
Luchini, P. 2013 Linearized no-slip boundary conditions at a rough surface. J. Fluid Mech. 737, 349367.Google Scholar
Luchini, P. 2016 Immersed-boundary simulation of turbulent flow past a sinusoidally undulated river bottom. Eur. J. Mech. B Fluids 55, 340347.Google Scholar
Luchini, P. 2021, Introducing CPL. arXiv: 2012.12143.Google Scholar
Magarvey, R.H. & Bishop, R.L. 1961 a Transition ranges for three-dimensional wakes. J. Phys. 39 (10), 14181422.Google Scholar
Magarvey, R.H. & Bishop, R.L. 1961 b Wakes in liquid-liquid systems. Phys. Fluids 4 (7), 800805.Google Scholar
Magarvey, R.H. & MacLatchy, C.S. 1965 Vortices in sphere wakes. Can. J. Phys. 43 (9), 16491656.Google Scholar
Marquet, O. & Larsson, M. 2015 Global wake instabilities of low aspect-ratio flat-plates. Eur. J. Mech. B Fluids 49, 400412.Google Scholar
Meliga, P., Chomaz, J.-M. & Sipp, D. 2009 Global mode interaction and pattern selection in the wake of a disk: a weakly nonlinear expansion. J. Fluid Mech. 633, 159189.Google Scholar
Meng, Q., An, H., Cheng, L. & Kimiaei, M. 2021 Wake transitions behind a cube at low and moderate Reynolds numbers. J. Fluid Mech. 919, A44.CrossRefGoogle Scholar
Mills, R., Sheridan, J., Hourigan, K. & Welsh, M.C. 1995 The mechanism controlling vortex shedding from rectangular bluff bodies. In Proc. 12th Australasian Fluid Mechanics Conf., 10–15 December (ed. R.W. Bilger), pp. 227230. Sydney University, Australia.Google Scholar
Monkewitz, P.A., Huerre, P. & Chomaz, J.-M. 1993 Global linear stability analysis of weakly non-parallel shear flows. J. Fluid Mech. 251, 120.CrossRefGoogle Scholar
Nakamura, Y., Ohya, Y. & Tsuruta, H. 1991 Experiments on vortex shedding from flat plates with square leading and trailing edges. J. Fluid Mech. 222, 437447.Google Scholar
Nakatsukasa, Y., Noferini, V. & Townsend, A. 2015 Computing the common zeros of two bivariate functions via Bézout resultants. Numerische Mathematik 129 (1), 181209.Google Scholar
Natarajan, R. & Acrivos, A. 1993 The instability of the steady flow past spheres and disks. J. Fluid Mech. 254, 323344.CrossRefGoogle Scholar
Naudascher, E. & Rockwell, D. 1994 Flow-induced vibrations : an engineering guide. In Hydraulic Structures Design Manual, vol. 7. A.A. Balkema.Google Scholar
Noack, B.R. & Eckelmann, H. 1994 A global stability analysis of the steady and periodic cylinder wake. J. Fluid Mech. 270, 297330.CrossRefGoogle Scholar
Oertel, H. 1990 Wakes behind blunt bodies. Annu. Rev. Fluid Mech. 22 (1), 539562.CrossRefGoogle Scholar
Okajima, A. 1982 Strouhal numbers of rectangular cylinders. J. Fluid Mech. 123, 379398.Google Scholar
Pierson, J.-L., Auguste, F., Hammouti, A. & Wachs, A. 2019 Inertial flow past a finite-length axisymmetric cylinder of aspect ratio 3: effect of the yaw angle. Phys. Rev. Fluids 4 (4), 044802.CrossRefGoogle Scholar
Richter-Gebert, J. 2011 Perspectives On Projective Geometry. Springer.CrossRefGoogle Scholar
Robichaux, J., Balachandar, S. & Vanka, S.P. 1999 Three-dimensional Folquet instability of the wake of square cylinder. Phys. Fluids 11 (3), 560578.CrossRefGoogle Scholar
Saha, A.K. 2004 Three-dimensional numerical simulations of the transition of flow past a cube. Phys. Fluids 16 (5), 16301646.Google Scholar
Sheard, G.J., Thompson, M.C. & Hourigan, K. 2008 Flow normal to a short cylinder with hemispherical ends. Phys. Fluids 20 (4), 041701.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Maths 45 (3), 561571.Google Scholar
Thompson, M.C. 2012 Effective transition of steady flow over a square leading-edge plate. J. Fluid Mech. 698, 335357.CrossRefGoogle Scholar
Thompson, M.C., Leweke, T. & Hourigan, K. 2021 Bluff bodies and wake–wall interactions. Annu. Rev. Fluid Mech. 53 (1), 347376.Google Scholar
Tomboulides, A.G. & Orszag, S.A. 2000 Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech. 416, 4573.Google Scholar
Tomboulides, A.G., Orszag, S.A. & Karniadakis, G.E. 1993 Direct and large-eddy simulation of the flow past a sphere. In Engineering Turbulence Modelling and Experiments, pp. 273282. Elsevier.CrossRefGoogle Scholar
Williamson, C.H.K. 1996 a Three-dimensional wake transition. J. Fluid Mech. 328, 345407.Google Scholar
Williamson, C.H.K. 1996 b Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28 (1), 477539.Google Scholar
Williamson, C.H.K. & Govardhan, R. 2008 A brief review of recent results in vortex-induced vibrations. J. Wind Engng Ind. Aerodyn. 96 (6), 713735.CrossRefGoogle Scholar
Yang, Y., Feng, Z. & Zhang, M. 2022 Onset of vortex shedding around a short cylinder. J. Fluid Mech. 933, A7.Google Scholar
Zampogna, G.A. & Boujo, E. 2023 From thin plates to Ahmed bodies: linear and weakly nonlinear stability of rectangular prisms. J. Fluid Mech. 966, A19.CrossRefGoogle Scholar
Zdravkovich, M.M., Brand, V.P., Mathew, G. & Weston, A. 1989 Flow past short circular cylinders with two free ends. J. Fluid Mech. 203, 557575.CrossRefGoogle Scholar
Zdravkovich, M.M., Flaherty, A.J., Pahle, M.G. & Skelhorne, I.A. 1998 Some aerodynamic aspects of coin-like cylinders. J. Fluid Mech. 360, 7384.Google Scholar
Zhang, Z., Kareem, A., Xu, F. & Jiang, H. 2023 Global instability and mode selection in flow fields around rectangular prisms. J. Fluid Mech. 955, A19.CrossRefGoogle Scholar
Supplementary material: File

Chiarini and Boujo supplementary material

Chiarini and Boujo supplementary material
Download Chiarini and Boujo supplementary material(File)
File 1.6 MB