Published online by Cambridge University Press: 29 March 2006
In the design of dielectrophoretic liquid orientation and expulsion systems for zero-gravity environments, maximum electromechanical effect of an imposed electric field is obtained by concentrating the field gradients in the neighbourhood of liquid interfaces. In typical configurations, the electric field gradient plays the role of an electromechanical wall, with a stiffness and inertia represented dynamically by electrohydrodynamic surface waves. As an orientation system rotates, the liquid motions are characterized by these waves as they couple to inertial bulk oscillations and centrifugal surface waves resulting from the rotation. A study is made of configurations typified by an equilibrium in which a circular cylindrical column of inviscid liquid undergoes rigid body rotation. The equilibrium is made possible, even though the cylindrical interface is bounded from outside only by its vapour, because the interface is stressed by an essentially tangential axial electric field intensity, with a strong gradient in the radial direction. Dispersion equations are developed for the electrohydrodynamic centrifugal waves of small amplitude. Conditions for incipience of instability and the frequencies of normal modes of oscillation are given. Experimental observations, which demonstrate the destabilizing influence of the rotation and the effect of rotation and electric field intensity on the normal mode frequencies, are in satisfactory agreement with the theory.