Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T21:24:07.677Z Has data issue: false hasContentIssue false

Splitting and jetting of cavitation bubbles in thin gaps

Published online by Cambridge University Press:  08 June 2020

Qingyun Zeng
Affiliation:
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore637371 Faculty of Natural Sciences, Institute for Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39016Magdeburg, Germany
Silvestre Roberto Gonzalez-Avila
Affiliation:
Faculty of Natural Sciences, Institute for Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39016Magdeburg, Germany
Claus-Dieter Ohl*
Affiliation:
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore637371 Faculty of Natural Sciences, Institute for Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39016Magdeburg, Germany
*
Email address for correspondence: [email protected]

Abstract

We study the dynamics of cavitation bubbles and induced jets in a thin liquid gap bounded by two rigid walls. The bubbles are generated experimentally with a focused laser pulse and are compared to simulations. The gap height $H$ and the distance of the position of bubble nucleation $h$ with respect to the nearest wall are varied. The bubble dynamics is recorded at 500 000 frames per second and is compared to simulation results from the compressible volume of fluid solver based on OpenFOAM that takes into account viscosity and surface tension. Good agreement of the spatio-temporal bubble dynamics between experiments and simulations is obtained. The findings are that the parameter space consists of three regions with distinct jetting dynamics that are characterized by two dimensionless parameters: the normalized gap height, $\unicode[STIX]{x1D702}=H/R_{max}$, where $R_{max}$ is the spherical equivalent radius of the bubble at maximum expansion, and the normalized stand-off distance of the bubble measured from the centre of the gap, $\unicode[STIX]{x1D701}=(H/2-h)/R_{max}$. The three qualitatively distinct jetting behaviours are the transferred jet impacting on the distant wall, the double jet as a result of a bubble splitting and impacting on both walls and the directed jet from a conically shaped bubble impacting on the closest wall. The impact velocity of the liquid jets onto the walls can reach more than $200~\text{m}~\text{s}^{-1}$ and strongly depends on the gap height and bubble position. The simulations reveal that the viscous boundary layers affect the bubble splitting and therefore the directions of jetting. Additionally, we found that with increasing length of the thin gap $L$ the bubble oscillation period increases and converges for sufficiently large gaps.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: University of Poitiers, École Nationale Supérieure de Mécanique et d’Aérotechnique (ENSMA) Téléport 2, 1 Avenue Clément Ader, 86360 Chasseneuil-du-Poitou, France.

References

Antkowiak, A., Bremond, N., Le Dizès, S. & Villermaux, E. 2007 Short-term dynamics of a density interface following an impact. J. Fluid Mech. 577, 241250.CrossRefGoogle Scholar
Azam, F. I., Karri, B., Ohl, S.-W., Klaseboer, E. & Khoo, B. C. 2013 Dynamics of an oscillating bubble in a narrow gap. Phys. Rev. E 88 (4), 043006.Google Scholar
Beig, S. A., Aboulhasanzadeh, B. & Johnsen, E. 2018 Temperatures produced by inertially collapsing bubbles near rigid surfaces. J. Fluid Mech. 852, 105125.CrossRefGoogle Scholar
Benjamin, T. B. & Ellis, A. T. 1966 The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil. Trans. R. Soc. Lond. A 260, 221240.Google Scholar
Birkhoff, G., MacDougall, D. P., Pugh, E. M. & Taylor, Sir Geoffrey 1948 Explosives with lined cavities. J. Appl. Phys. 19 (6), 563582.CrossRefGoogle Scholar
Blake, J. R. & Gibson, D. C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19 (1), 99123.CrossRefGoogle Scholar
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.CrossRefGoogle Scholar
Brennen, C. E. 2014 Cavitation and Bubble Dynamics. Cambridge University Press.Google Scholar
Chahine, G. L. 1982 Experimental and asymptotic study of nonspherical bubble collapse. In Mechanics and Physics of Bubbles in Liquids, pp. 187197. Springer.CrossRefGoogle Scholar
Gonzalez-Avila, S. R., van Blokland, A. C., Zeng, Q. & Ohl, C.-D. 2018 Cavitation bubble collapse and wall shear stress generated in a narrow gap. In Proceedings of the 10th International Symposium on Cavitation (CAV2018). ASME Press.Google Scholar
Gonzalez-Avila, S. R., van Blokland, A. C., Zeng, Q. & Ohl, C.-D. 2020 Jetting and shear stress enhancement from cavitation bubbles collapsing in a narrow gap. J. Fluid Mech. 884, A23.CrossRefGoogle Scholar
Gonzalez-Avila, S. R., Huang, X., Quinto-Su, P. A., Wu, T. & Ohl, C.-D. 2011a Motion of micrometer sized spherical particles exposed to a transient radial flow: attraction, repulsion, and rotation. Phys. Rev. Lett. 107 (7), 074503.CrossRefGoogle Scholar
Gonzalez-Avila, S. R., Klaseboer, E., Khoo, B. C. & Ohl, C.-D. 2011b Cavitation bubble dynamics in a liquid gap of variable height. J. Fluid Mech. 682, 241260.CrossRefGoogle Scholar
Gonzalez-Avila, S. R., Song, C. & Ohl, C.-D. 2015 Fast transient microjets induced by hemispherical cavitation bubbles. J. Fluid Mech. 767, 3151.CrossRefGoogle Scholar
Han, B., Zhu, R., Guo, Z., Liu, L. & Ni, X.-W. 2018 Control of the liquid jet formation through the symmetric and asymmetric collapse of a single bubble generated between two parallel solid plates. Eur. J. Mech. (B/Fluids) 72, 114122.CrossRefGoogle Scholar
Hsiao, C.-T., Choi, J.-K., Singh, S., Chahine, G. L., Hay, T. A., Ilinskii, Y. A., Zabolotskaya, E. A., Hamilton, M. F., Sankin, G., Yuan, F. et al. 2013 Modelling single-and tandem-bubble dynamics between two parallel plates for biomedical applications. J. Fluid Mech. 716, 137170.CrossRefGoogle ScholarPubMed
Ishida, H., Nuntadusit, C., Kimoto, H., Nakagawa, T. & Yamamoto, T.2001 Cavitation bubble behavior near solid boundaries. In Fourth International Symposium on Cavitation, California Institute of Technology. Available at http://resolver.caltech.edu/cav2001:sessionA5.003.Google Scholar
Kim, W., Kim, T.-H., Choi, J. & Kim, H.-Y. 2009 Mechanism of particle removal by megasonic waves. Appl. Phys. Lett. 94 (8), 081908.Google Scholar
Koch, M., Lechner, C., Reuter, F., Köhler, K., Mettin, R. & Lauterborn, W. 2016 Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using openfoam. Comput. Fluids 126, 7190.CrossRefGoogle Scholar
Kondo, T. & Ando, K. 2019 Simulation of high-speed droplet impact against a dry/wet rigid wall for understanding the mechanism of liquid jet cleaning. Phys. Fluids 31 (1), 013303.CrossRefGoogle Scholar
Koukouvinis, P., Strotos, G., Zeng, Q., Gonzalez-Avila, S. R., Theodorakakos, A., Gavaises, M. & Ohl, C.-D. 2018 Parametric investigations of the induced shear stress by a laser-generated bubble. Langmuir 34 (22), 64286442.CrossRefGoogle ScholarPubMed
Kucherenko, V. V. & Shamko, V. V. 1986 Dynamics of electric-explosion cavities between two solid parallel walls. J. Appl. Mech. Tech. Phys. 27 (1), 112115.CrossRefGoogle Scholar
Lauterborn, W. & Bolle, H. 1975 Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 72 (2), 391399.CrossRefGoogle Scholar
Le Gac, S., Zwaan, E., van den Berg, A. & Ohl, C.-D. 2007 Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement. Lab on a Chip 7 (12), 16661672.CrossRefGoogle Scholar
Lechner, C., Lauterborn, W., Koch, M. & Mettin, R. 2019 Fast, thin jets from bubbles expanding and collapsing in extreme vicinity to a solid boundary: a numerical study. Phys. Rev. Fluids 4 (2), 021601.CrossRefGoogle Scholar
Macdonald, J. R. 1969 Review of some experimental and analytical equations of state. Rev. Mod. Phys. 41 (2), 316349.CrossRefGoogle Scholar
Miller, S. T., Jasak, H., Boger, D. A., Paterson, E. G. & Nedungadi, A. 2013 A pressure-based, compressible, two-phase flow finite volume method for underwater explosions. Comput. Fluids 87, 132143.CrossRefGoogle Scholar
Mohammadzadeh, M., Li, F. & Ohl, C.-D. 2017 Shearing flow from transient bubble oscillations in narrow gaps. Phys. Rev. Fluids 2 (1), 014301.CrossRefGoogle Scholar
Ogasawara, T., Tsubota, N., Seki, H., Shigaki, Y. & Takahira, H.Experimental and numerical investigations of the bubble collapse at the center between rigid walls. In J. Phys.: Conf. Ser., vol. 656, p. 012031. IOP Publishing.Google Scholar
Ohl, C.-D., Arora, M., Dijkink, R., Janve, V. & Lohse, D. 2006a Surface cleaning from laser-induced cavitation bubbles. Appl. Phys. Lett. 89 (7), 074102.CrossRefGoogle Scholar
Ohl, C.-D., Arora, M., Ikink, R., De Jong, N., Versluis, M., Delius, M. & Lohse, D. 2006b Sonoporation from jetting cavitation bubbles. Biophys. J. 91 (11), 42854295.CrossRefGoogle Scholar
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.CrossRefGoogle Scholar
Plesset, M. S. & Chapman, R. B. 1971 Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47 (2), 283290.CrossRefGoogle Scholar
Prentice, P., Cuschieri, A., Dholakia, K., Prausnitz, M. & Campbell, P. 2005 Membrane disruption by optically controlled microbubble cavitation. Nat. Phys. 1 (2), 107.CrossRefGoogle Scholar
Quah, E. W., Karri, B., Ohl, S.-W., Klaseboer, E. & Khoo, B. C. 2018 Expansion and collapse of an initially off-centered bubble within a narrow gap and the effect of a free surface. Intl J. Multiphase Flow 99, 6272.CrossRefGoogle Scholar
Quinto-Su, P. A. & Ohl, C.-D. 2009 Interaction between two laser-induced cavitation bubbles in a quasi-two-dimensional geometry. J. Fluid Mech. 633, 425435.CrossRefGoogle Scholar
Reuter, F. & Kaiser, S. A. 2019 High-speed film-thickness measurements between a collapsing cavitation bubble and a solid surface with total internal reflection shadowmetry. Phys. Fluids 31 (9), 097108.CrossRefGoogle Scholar
Rusche, H.2003 Computational fluid dynamics of dispersed two-phase flows at high phase fractions. PhD thesis, Imperial College London (University of London).Google Scholar
Schlichting, H. & Gersten, K. 2016 Boundary-layer Theory. Springer.Google Scholar
Shervani-Tabar, M. T., Abdullah, A. & Shabgard, M. R. 2006 Numerical study on the dynamics of an electrical discharge generated bubble in edm. Engng Anal. Bound. Elem. 30 (6), 503514.CrossRefGoogle Scholar
Supponen, O., Obreschkow, D., Tinguely, M., Kobel, P., Dorsaz, N. & Farhat, M. 2016 Scaling laws for jets of single cavitation bubbles. J. Fluid Mech. 802, 263293.CrossRefGoogle Scholar
Tomita, Y. & Shima, A. 1986 Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535564.CrossRefGoogle Scholar
Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620631.CrossRefGoogle Scholar
Yuan, F., Yang, C. & Zhong, P. 2015 Cell membrane deformation and bioeffects produced by tandem bubble-induced jetting flow. Proc. Natl Acad. Sci. USA 112 (51), E7039E7047.CrossRefGoogle ScholarPubMed
Zeng, Q., Gonzalez-Avila, S. R., Dijkink, R., Koukouvinis, P., Gavaises, M. & Ohl, C.-D. 2018a Wall shear stress from jetting cavitation bubbles. J. Fluid Mech. 846, 341355.CrossRefGoogle Scholar
Zeng, Q., Gonzalez-Avila, S. R., Ten Voorde, S. & Ohl, C.-D. 2018b Jetting of viscous droplets from cavitation-induced Rayleigh–Taylor instability. J. Fluid Mech. 846, 916943.CrossRefGoogle Scholar
Zhang, A.-M., Ni, B.-Y., Song, B.-Y. & Yao, X.-L. 2010 Numerical simulation of bubble breakup phenomena in a narrow flow field. Z. Angew. Math. Mech. 31 (4), 449460.CrossRefGoogle Scholar
Zhang, S., Duncan, J. H. & Chahine, G. L. 1993 The final stage of the collapse of a cavitation bubble near a rigid wall. J. Fluid Mech. 257, 147181.CrossRefGoogle Scholar
Zwaan, E., Le Gac, S., Tsuji, K. & Ohl, C.-D. 2007 Controlled cavitation in microfluidic systems. Phys. Rev. Lett. 98 (25), 254501.CrossRefGoogle ScholarPubMed