Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T22:42:26.919Z Has data issue: false hasContentIssue false

Spin-coating of vertically stratified thin liquid films

Published online by Cambridge University Press:  18 March 2010

A. McINTYRE
Affiliation:
Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
L. N. BRUSH*
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
*
Email address for correspondence: [email protected]

Abstract

Spin-coating is a process used to fabricate thin films for device applications. In this paper, lubrication theory is used to derive an axisymmetric model for the spin-coating of two immiscible vertically stratified Newtonian thin films. The model includes gravitational, van der Waals, capillary and viscous forces, differences in liquid layer properties and evaporation/condensation effects. Thinning calculations focus on the effects of viscosity and condensation/evaporation. In this case, for layers of uniform thickness, the lower layer thins monotonically yet never reaches zero thickness. With evaporation mass loss the upper layer disappears in finite time, whereas with condensation effects the upper layer approaches a steady-state thickness. Fully nonlinear calculations are carried out for films with non-uniform thickness and the deviation of the interfaces from the flat state is monitored. In general, disturbances to the lower layer have a greater effect on the upper layer than those of disturbances of the upper layer on the lower layer. Disturbances along the upper gas–liquid free surface propagate outward more rapidly than those along the lower liquid–liquid interface and disturbances that decrease the film thickness tend to dissipate more slowly.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acrivos, A., Shah, M. J. & Petersen, E. E. 1960 On the flow of a non-Newtonian liquid on a rotating disk. J. Appl. Phys. 31, 963968.CrossRefGoogle Scholar
Bird, R. B., Armstrong, R. C. & Hassager, O. 1977 Dynamics of Polymeric Fluids, Vol. I – Fluid Mechanics. John Wiley.Google Scholar
Bjorstrom, C. M., Nilsson, S., Bernasik, A., Budkowskic, A., Anderssond, M., Magnusson, K. O. & Moons, E. 2007 Vertical phase separation in spin-coated films of a low bandgap polyfluorene/PCBM blend. Effects of specific substrate interaction. Appl. Surface Sci. 253 (8), 39063912.CrossRefGoogle Scholar
Brush, L. N. & Roper, S. M. 2008 The thinning of lamella in surfactant-free foams with non-Newtonian liquid phase. J. Fluid. Mech. 616, 235262.CrossRefGoogle Scholar
Burelbach, J. P., Bankoff, S. G. & Davis, S. H. 1988 Nonlinear stability of evaporating/condensing liquid films. J. Fluid. Mech. 195, 463494.CrossRefGoogle Scholar
Castro, F. A., Graeff, C. F. O., Heier, J. & Hany, R. 2007 Interface morphology snapshots of vertically segregated thin films of semiconducting polymer/polystyrene blends. Polymer 48, 23802386.CrossRefGoogle Scholar
Charpin, J. P. F., Lombe, M. & Myers, T. G. 2007 Spin coating of non-Newtonian fluids with a moving front. Phys. Rev. E 76, 016312.CrossRefGoogle ScholarPubMed
Craster, R. V. & Matar, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 11311198.CrossRefGoogle Scholar
Danov, K. D., Paunov, V. N., Alleborn, N., Rasziller, H. & Durst, F. 1998 Stability of evaporating two-layered liquid film in the presence of surfactant. Part I. The equations of lubrication approximation. Chem. Engng Sci. 53 (15), 28092822.CrossRefGoogle Scholar
Davis, S. H. 2000 Perspectives in Fluid Dynamics: A Collective Introduction to Current Research (ed. Batchelor, G. K., Moffatt, H. K. & Worster, M. G.), chapter 1, pp. 151. Cambridge University Press.Google Scholar
Dussan, V. E. B. 1979 On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid. Mech. 11, 371400.CrossRefGoogle Scholar
Dussan, V. E. B. & Davis, S. H. 1974 On the motion of fluid-fluid interface along a solid surface. J. Fluid Mech. 65, 7195.CrossRefGoogle Scholar
Ehrhard, P. & Davis, S. H. 1991 Non-isothermal spreading of liquid drops on horizontal plates. J. Fluid Mech. 229, 365388.CrossRefGoogle Scholar
Emslie, A. G., Bonner, F. T., & Peck, L. G. 1958 Flow of a viscous liquid on a rotating disk. J. Appl. Phys. 29 (5), 858862.CrossRefGoogle Scholar
Erneux, E. & Davis, S. H. 1993 Nonlinear rupture of free films. Phys. Fluids A 5, 11171122.CrossRefGoogle Scholar
Fisher, L. S. & Golovin, A. A. 2005 Nonlinear stability analysis of a two-layer thin liquid film: dewetting and autophobic behavior. J. Colloid Interface Sci. 291, 515528.CrossRefGoogle ScholarPubMed
Gao, P. & Lu, X. 2008 Mechanism of the long-wave inertialess instability of a two-layer film flow. J. Fluid Mech. 608, 379391.CrossRefGoogle Scholar
Halls, J. J. M., Walsh, C. A., Greenham, N. C., Marsegila, E. A., Friend, R. H., Moratti, S. C. & Holmes, A. B. 1995 Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498500.CrossRefGoogle Scholar
Heriot, S. Y. & Jones, R. A. L. 2005 An interfacial instability in a transient wetting layer leads to lateral phase separation in thin spin-cast polymer-blend films. Nature Mat. 4, 782786.CrossRefGoogle Scholar
Israelachvili, J. N. 1991 Intermolecular and Surface Forces. Academic.Google Scholar
Jones, E., Oliphant, T., Peterson, P., et al. 2001 SciPy: open source scientific tools for Python. http://www.scipy.org.Google Scholar
Jenekhe, S. A. & Schuldt, S. B. 1984 Coating flow of non-Newtonian fluids on a flat rotating disk. Indus. Engng Chem. Fund. 23, 432436.CrossRefGoogle Scholar
Kliakhandler, I. L. & Sivashinsky, G. I. 1995 Kinetic alpha effect in viscosity stratified creeping flows. Phys. Fluids 7 (8), 18661871.CrossRefGoogle Scholar
Kliakhandler, I. L. & Sivashinsky, G. I. 1996 Viscous damping and instabilities in stratified liquid film flowing down a slightly inclined plane. Phys. Fluids 9 (1), 2330.CrossRefGoogle Scholar
Li, C. H. 1969 Instability of a three-layer viscous stratified fluid. Phys. Fluids 12, 2473.CrossRefGoogle Scholar
Matar, O. K., Sisoev, G. M. & Lawrence, C. J. 2008 Thin film flow over spinning disks: The effect of surface topography and flow rate modulation. Chem. Engng Sci. 63, 22252232.CrossRefGoogle Scholar
Momoniat, E. & Mason, D. P. 1998 Investigation of the effect of the Coriolis force on a thin fluid film on a rotating disk. Intl J. Nonlin. Mech. 33 (6), 10691088.CrossRefGoogle Scholar
Myers, T. G. 2005 Application of non-Newtonian models to thin film flow. Phys. Rev. E 72, 066302.CrossRefGoogle ScholarPubMed
Myers, T. G. & Charpin, J. P. F. 2001 The Effect of the Coriolis force on axisymmetric rotating thin film flows. Intl J. Nonlin. Mech. 36, 629635.CrossRefGoogle Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (3), 931980.CrossRefGoogle Scholar
Pototsky, A., Bestehorn, M., Merkt, D. & Thiele, U. 2005 Morphology changes in the evolution of liquid two-layer films. J. Chem. Phys. 122, 224711.CrossRefGoogle ScholarPubMed
Reisfeld, B., Bankoff, S. G. & Davis, S. H. 1991 a The dynamics and stability of thin liquid-films during spin-coating. Part I. Films with constant rates of evaporation or absorption. J. Appl. Phys. 70 (10), 52585266.CrossRefGoogle Scholar
Reisfeld, B., Bankoff, S. G. & Davis, S. H. 1991 b The dynamics and stability of thin liquid-films during spin-coating. Part II. Films with unit order and large Péclet numbers. J. Appl. Phys. 70 (10), 52675277.CrossRefGoogle Scholar
Schwartz, L. W. & Roy, R. V. 2004 Theoretical and numerical results for spin coating of viscous liquids. Phys. Fluids 16 (3), 569584.CrossRefGoogle Scholar
Sprenger, M., Walheim, S., Budkowski, A. & Steiner, U. 2003 Hierarchic structure formation in binary and ternary polymer blends. Interface Sci. 11, 225335.CrossRefGoogle Scholar
Wei, J. H., Coffey, D. C. & Ginger, D. S. 2006 Nucleating pattern formation in spin-coated polymer blend films with nanoscale surface templates. J. Phys. Chem. B 110, 2432424330.CrossRefGoogle ScholarPubMed
Williams, M. B. & Davis, S. H. 1982 Non-linear theory of film rupture. J. Colloid Interface Sci. 90 (1), 220228.CrossRefGoogle Scholar
Yang, F. & Forrest, S. R. 2008 Photocurrent generation in nanostructured organic solar cells. ACS Nano 2 (5), 10221032.CrossRefGoogle ScholarPubMed