Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T03:54:45.069Z Has data issue: false hasContentIssue false

Spatially decaying turbulence and its relation to mixing across density interfaces

Published online by Cambridge University Press:  11 April 2006

E. J. Hopfinger
Affiliation:
Laboratoire de Mécanique des Fluides (Laboratoire Associé au C.N.R.S.), Université de Grenoble, France
J.-A. Toly
Affiliation:
Laboratoire de Mécanique des Fluides (Laboratoire Associé au C.N.R.S.), Université de Grenoble, France

Abstract

The turbulence generated by a vertically oscillating grid in a water tank and the entrainment across a salinity interface caused by this turbulence have been investigated experimentally. Measurements were carried out in a homogeneous layer of fluid as well as a two-layered fluid, which permitted us to determine the decay law of this turbulence and the way in which the structure of the turbulence depends on the mesh size and on the frequency and amplitude of the grid oscillation. It was found that the turbulent kinetic energy decays with distance from the grid according to a power law $\overline{q^2}\propto z^{-n}$, with n close to 2, and that the turbulent Reynolds number remains approximately constant during decay. The linear dependence of the r.m.s. turbulent velocity on the grid oscillation frequency found by Thompson & Turner (1975) in the case of a square-bar grid has been confirmed. It is shown here that this linear relation remains valid when an interface is present and consequently the dependence of the entrainment velocity on the local Richardson number is of the form $u_e/u \propto Ri^{-\frac{3}{2}}$, the Péclet number being high. While the bearing of these results on the problem of the thermocline or an inversion is clear we wish to emphasize that the spatial decay of turbulence is interesting in itself.

Type
Research Article
Copyright
© 1976 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baines, W. D. 1975 Entrainment by a plume or jet at a density interface. J. Fluid Mech. 68, 309320.Google Scholar
Batchelor, G. K. 1953 Homogeneous Turbulence. Cambridge University Press.
Bouvard, M. & Dumas, H. 1967 Application de la méthode du fil chaud à la mesure de la turbulence dans l'eau. Houille Blanche, 22, 257278, 723733.Google Scholar
Corrsin, S. 1963 Turbulence: experimental methods. Handbuch der Physik, vol. viii/2, Strömungsmechanik, II, pp. 524587. Springer.
Crapper, P. F. & Linden, P. F. 1974 The structure of turbulent density interfaces. J. Fluid Mech. 65, 4563.Google Scholar
Kato, H. & Phillips, O. M. 1969 On the penetration of a turbulent layer into a stratified fluid. J. Fluid Mech. 37, 643655.Google Scholar
Linden, P. F. 1973 The interaction of a vortex ring with a sharp density interface: a model for turbulent entrainment. J. Fluid Mech. 60, 467480.Google Scholar
Linden, P. F. 1975 The deepening of a mixed layer in a stratified fluid. J. Fluid Mech. 71, 385405.Google Scholar
Lismonde, B. 1976 Les anémomètres à laser. Etude de leurs caractéristiques. Réalisation de prototypes. Thèse de Docteur-Ingénieur, Université de Grenoble.
Long, R. R. 1975 The influence of shear on mixing across density interfaces. J. Fluid Mech. 70, 305320.Google Scholar
Resch, F. J. & Leuchtheusser, H. J. 1972 Mesures des tensions de Reynolds dans le ressaut hydraulique. J. Hydraul. Res. 10, 409430.Google Scholar
Rouse, H. & Dodu, J. 1955 Diffusion turbulente à travers une discontinuité de densité. Houille Blanche, 10, 522532.Google Scholar
Thompson, S. M. & Turner, J. S. 1975 Mixing across an interface due to turbulence generated by an oscillating grid. J. Fluid Mech. 67, 349368.Google Scholar
Toly, J.-A. 1975 Diffusion turbulente d’énergie et de masse avec application au problème de la thermocline. Thèse de Docteur-Ingénieur, Université de Grenoble.
Turner, J. S. 1968 The influence of molecular diffusivity on turbulent entrainment across a density interface. J. Fluid Mech. 33, 639656.Google Scholar
Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.
Wolanski, E. J. & Brush, L. M. 1975 Turbulent entrainment across stable density step structures. Tellus, 27, 259268.Google Scholar
Wu, J. 1973 Wind-induced turbulent entrainment across a stable density interface. J. Fluid Mech. 61, 275287.Google Scholar