Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-20T08:51:22.901Z Has data issue: false hasContentIssue false

Spatial structure of a turbulent boundary layer with irregular surface roughness

Published online by Cambridge University Press:  19 May 2010

Y. WU
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, USA
K. T. CHRISTENSEN*
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, USA
*
Email address for correspondence: [email protected]

Abstract

Particle image velocimetry experiments were performed to study the impact of realistic roughness on the spatial structure of wall turbulence at moderate Reynolds number. This roughness was replicated from an actual turbine blade damaged by deposition of foreign materials and its features are quite distinct from most roughness characterizations previously considered as it is highly irregular and embodies a broad range of topographical scales. The spatial structure of flow over this rough surface near the outer edge of the roughness sublayer is contrasted with that of smooth-wall flow to identify any structural modifications due to roughness. Hairpin vortex packets are observed in the outer layer of the rough-wall flow and are found to contribute heavily to the Reynolds shear stress, consistent with smooth-wall flow. While similar qualitative consistency is observed in comparisons of smooth- and rough-wall two-point correlations, some quantitative differences are also apparent. In particular, a reduction in the streamwise extent of two-point correlations of streamwise velocity is noted which could be indicative of a roughness-induced modification of outer-layer vortex organization. Proper orthogonal decomposition analysis reveals the streamwise coherence of the larger scales to be most sensitive to roughness while the spatial characteristics of the smaller scales appear relatively insensitive to such effects.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA

References

REFERENCES

Adrian, R. J., Christensen, K. T. & Liu, Z. C. 2000 a Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids 29, 275290.CrossRefGoogle Scholar
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 b Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Allen, J. J., Shockling, M. A., Kunkel, G. J. & Smits, A. J. 2007 Turbulent flow in smooth and rough pipes. Phil. Trans. R. Soc. A 365, 699714.CrossRefGoogle ScholarPubMed
Bakken, O. M., Frogstad, P. A., Ashrafian, A. & Andersson, H. I. 2005 Reynolds number effects in the outer layer of the turbulent flow in a channel with rough walls. Phys. Fluids 17, 065101.CrossRefGoogle Scholar
Balakumar, B. J. & Adrian, R. J. 2007 Large- and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. A 365, 665681.CrossRefGoogle ScholarPubMed
Bandyopadhyay, P. R. & Watson, R. D. 1988 Structure of rough-wall turbulent boundary layers. Phys. Fluids 31, 18771883.CrossRefGoogle Scholar
Bons, J. P. 2002 St and C f augmentation for real turbine roughness with elevated free stream turbulence. J. Turbomach. 124, 632644.CrossRefGoogle Scholar
Bons, J. P., Taylor, R. P., McClain, S. T. & Rivir, R. B. 2001 The many faces of turbine surface roughness. J. Turbomach. 123, 739748.CrossRefGoogle Scholar
Brown, G. L. & Thomas, A. S. W. 1977 Large structure in a turbulent boundary layer. Phys. Fluids 20, S243S252.CrossRefGoogle Scholar
Carlier, J. & Stanislas, M. 2005 Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. J. Fluid Mech. 535, 143188.CrossRefGoogle Scholar
Cazemier, W., Verstappen, R. W. C. P. & Veldman, A. E. P. 1998 Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Phys. Fluids 10 (7), 16851699.CrossRefGoogle Scholar
Chong, M. S., Soria, J., Perry, A. E., Chacin, J., Cantwell, B. J. & Na, Y. 1998 Turbulence structures of wall-bounded shear flows found using DNS data. J. Fluid Mech. 357, 225247.CrossRefGoogle Scholar
Christensen, K. T. & Adrian, R. J. 2001 Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433443.CrossRefGoogle Scholar
Christensen, K. T. & Wu, Y. 2005 Characteristics of vortex organization in the outer layer of wall turbulence. In Fourth International Symposium on Turbulence and Shear Flow Phenomena, Williamsburg, VA.Google Scholar
Colebrook, C. F. 1939 Turbulent flow in pipes with particular reference to the transition region between the smooth- and rough-pipe laws. J. Inst. Civil Engng 11, 133–56.CrossRefGoogle Scholar
Connelly, J. S., Schultz, M. P. & Flack, K. A. 2006 Velocity-defect scaling for turbulent boundary layers with a range of relative roughness. Exp. Fluids 40, 188195.CrossRefGoogle Scholar
Delo, C. J., Kelso, R. M. & Smits, A. J. 2004 Three-dimensional structure of a low-Reynolds-number turbulent boundary layer. J. Fluid Mech. 512, 4783.CrossRefGoogle Scholar
Falco, R. E. 1991 A coherent structure model of the turbulent boundary layer and its ability to predict Reynolds number dependence. Phil. Trans. R. Soc. Lond. A 336, 103129.Google Scholar
Flack, K. A., Schultz, M. P. & Shapiro, T. A. 2005 Experimental support for Townsend's Reynolds number similarity hypothesis on rough walls. Phys. Fluids 17, 035102.CrossRefGoogle Scholar
Flores, O., Jimenez, J. & del Alamo, J. C. 2007 Vorticity organization in the outer layer of turbulent channels with disturbed walls. J. Fluid Mech. 591, 145154.CrossRefGoogle Scholar
Ganapathisubramani, B., Hutchins, N., Hambleton, W. T., Longmire, E. K. & Marusic, I. 2005 Investigation of large-scale coherence in a turublent boundary layer using two-point correlations. J. Fluid Mech. 524, 5780.CrossRefGoogle Scholar
Ganapathisubramani, B., Longmire, E. K. & Marusic, I. 2003 Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 3546.CrossRefGoogle Scholar
Geers, L., Tummers, M. & Hanjalic, K. 2005 Particle imaging velocimetry-based identification of coherent structures in normally impinging multiple jets. Phys. Fluids 17, 055105.CrossRefGoogle Scholar
Guala, M., Hommema, S. E. & Adrian, R. J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.CrossRefGoogle Scholar
Head, M. R. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297338.CrossRefGoogle Scholar
Holmes, P., Lumley, J. & Berkooz, G. 1996 Turbulence, Coherent Structures, Dynamical Systerms and Symmetry. Cambridge University Press.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Jimenez, J. 2004 Turbulent flow over rough wall. Annu. Rev. Fluid Mech. 36, 173196.CrossRefGoogle Scholar
Karlsson, R. I. 1980 Studies of skin friction in turbulent boundary layers on smooth and rough walls. PhD thesis, Department of Allied Thero and Fluid Dynamics, Chalmers University of Technology, Göteborg, Sweden.Google Scholar
Keirsbulck, L., Labraga, L., Mazouz, A. & Tournier, C. 2002 Surface roughness effects on turbulent boundary layer structures. J. Fluids Engng 124, 127135.CrossRefGoogle Scholar
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11, 417422.CrossRefGoogle Scholar
Kostas, J., Soria, J. & Chong, M. 2005 A comparison between snapshot POD analysis of PIV velocity and vorticity data. Exp. Fluids 38, 146160.CrossRefGoogle Scholar
Krogstad, P. A. & Antonia, R. A. 1994 Structure of turbulent boundary layers on smooth and rough walls. J. Fluid Mech. 277, 121.CrossRefGoogle Scholar
Krogstad, P. A. & Antonia, R. A. 1999 Surface roughness effects in turbulent boundary layers. Exp. Fluids 27, 450460.CrossRefGoogle Scholar
Krogstad, P. A., Antonia, R. A. & Browne, L. W. B. 1992 Comparison between rough and smooth-wall turbulent boundary layers. J. Fluid Mech. 245, 599617.CrossRefGoogle Scholar
Kunkel, G. J. & Marusic, I. 2006 Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. J. Fluid Mech. 548, 375402.CrossRefGoogle Scholar
Lee, S. H. & Sung, H. J. 2007 Direct numerical simulation of the turbulent boundary layer over a rod-roughened wall. J. Fluid Mech. 584, 125146.CrossRefGoogle Scholar
Ligrani, P. M. & Moffat, R. J. 1986 Structure of transitionally rough and fully rough turbulent boundary layers. J. Fluid Mech. 162, 6998.CrossRefGoogle Scholar
Liu, Z., Adrian, R. J. & Hanratty, T. J. 2001 Large-scale modes of turbulent channel flow: transport and structure. J. Fluid Mech. 448, 5380.CrossRefGoogle Scholar
Meinhart, C. D. 1994 Investigation of turbulent boundary-layer structure using particle-image velocimetry. PhD thesis, Department of Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign, IL.Google Scholar
Meinhart, C. D. & Adrian, R. J. 1995 On the existence of uniform momentum zones in a turbulent boundary layer. Phys. Fluids 7, 694696.CrossRefGoogle Scholar
Nakagawa, S. & Hanratty, T. J. 2001 Particle image velocimetry measurements of flow over a wavy wall. Phys. Fluids 13 (11), 35043507.CrossRefGoogle Scholar
Natrajan, V. K. & Christensen, K. T. 2006 The role of coherent structures in subgrid-scale energy transfer within the log layer of wall turbulence. Phys. Fluids 18, 065104.CrossRefGoogle Scholar
Natrajan, V. K., Wu, Y. & Christensen, K. T. 2007 Spatial signatures of retrograde spanwise vortices in wall turbulence. J. Fluid Mech. 574, 155167.CrossRefGoogle Scholar
Nikuradse, J. 1933 Laws of flow in rough pipes. Tech. Mem. No. 1292. NACA.Google Scholar
Panton, R. L., ed. 1997 Self-Sustaining Mechanisms of Wall Turbulence. Computational Mechanics Publications.Google Scholar
Raupach, M. R. 1981 Conditional statistics of reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J. Fluid Mech. 108, 363382.CrossRefGoogle Scholar
Raupach, M. R., Antonia, R. A. & Rajagopalan, S. 1991 Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44, 125.CrossRefGoogle Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601–39.CrossRefGoogle Scholar
Sabot, J., Saleh, I. & Comte-Bellot, G. 1977 Effects of roughness on the intermittent maintenance of Reynolds shear stress in pipe flow. Phys. Fluids 20, Pt II (10), S150S155.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherrent structures. Part 1. Coherent structures. Q. Appl. Math. 45, 561.CrossRefGoogle Scholar
Smith, C. R. 1984 A synthesized model of the near-wall behaviour in turbulent boundary layers. In Proceedings of the 8th Symposium on Turbulence (ed. Patterson, J. Z. G.), pp. 333364. University of Missouri-Rolla, Rolla, MO.Google Scholar
Smith, C. R., Walker, J. D. A., Haidari, A. H. & Sobrun, U. 1991 On the dynamics of near-wall turbulence. Phil. Trans. R. Soc. Lond. A 336, 131175.Google Scholar
Soloff, S. M., Adrian, R. J. & Liu, Z.-C. 1997 Distortion compensation for generalized stereoscopic particle image velocimetry. Meas. Sci. Technol. 8, 14411454.CrossRefGoogle Scholar
Stanislas, M., Perret, L. & Foucat, J.-M. 2008 Vortical structures in the turbulent boundary layer: a possible route to a universal representation. J. Fluid Mech. 602, 327382.CrossRefGoogle Scholar
Tachie, M. F., Bergstrom, D. J. & Balachandar, R. 2000 Rough wall turbulent boundary layers in shallow open channel flow. J. Fluids Engng 122, 533541.CrossRefGoogle Scholar
Tachie, M. F., Bergstrom, D. J. & Balachandar, R. 2003 Roughness effects in low-Reh open-channel turbulent boundary layers. Exp. Fluids 35, 338346.CrossRefGoogle Scholar
Tomkins, C. D. 2001 The structure of turbulence over smooth and rough walls. PhD thesis, University of Illinois at Urbana-Champaign, IL.Google Scholar
Tomkins, C. D. & Adrian, R. J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.CrossRefGoogle Scholar
Volino, R. J., Schultz, M. P. & Flack, K. A. 2007 Turbulence structure in rough- and smooth-wall boundary layers. J. Fluid Mech. 592, 263293.CrossRefGoogle Scholar
Volino, R. J., Schultz, M. P. & Flack, K. A. 2009 Turbulence structure in a boundary layer with two-dimensional roughness. J. Fluid Mech. 635, 75101.CrossRefGoogle Scholar
Wieneke, B. 2005 Stereo-PIV using self-calibration on particle images. Exp. Fluids 39, 267280.CrossRefGoogle Scholar
Wu, Y. 2008 Experimental investigation of highly irregular roughness effects in wall turbulence. PhD thesis, University of Illinois at Urbana-Champaign, IL.Google Scholar
Wu, Y. & Christensen, K. T. 2006 Population trends of spanwise vortices in wall turbulence. J. Fluid Mech. 568, 5576.CrossRefGoogle Scholar
Wu, Y. & Christensen, K. T. 2007 Outer-layer similarity in the presence of a practical rough-wall topography. Phys. Fluids 19, 085108.CrossRefGoogle Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar