Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-21T11:01:26.013Z Has data issue: false hasContentIssue false

Spatial distribution of pressure resonance in compressible cavity flow

Published online by Cambridge University Press:  11 June 2018

Katya M. Casper*
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, USA
Justin L. Wagner
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, USA
Steven J. Beresh
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, USA
Russell W. Spillers
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, USA
John F. Henfling
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, USA
Lawrence J. Dechant
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, USA
*
Email address for correspondence: [email protected]

Abstract

The development of the unsteady pressure field on the floor of a rectangular cavity was studied at Mach 0.9 using high-frequency pressure-sensitive paint. Power spectral amplitudes at each cavity resonance exhibit a spatial distribution with a streamwise-oscillatory pattern; additional maxima and minima appear as the mode number is increased. This spatial distribution also appears in the propagation velocity of modal pressure disturbances. This behaviour was tied to the superposition of a downstream-propagating shear-layer disturbance and an upstream-propagating acoustic wave of different amplitudes and convection velocities, consistent with the classical Rossiter model. The summation of these waves generates a net downstream-travelling wave whose amplitude and phase velocity are modulated by a fixed envelope within the cavity. This travelling-wave interpretation of the Rossiter model correctly predicts the instantaneous modal pressure behaviour in the cavity. Subtle spanwise variations in the modal pressure behaviour were also observed, which could be attributed to a shift in the resonance pattern as a result of spillage effects at the edges of the finite-width cavity.

Type
JFM Papers
Copyright
© Cambridge University Press 2018. This is a work of the U.S. Government and is not subject to copyright protection in the United States. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, J. O.2005 Acoustic resonance in a cavity under a subsonic flow. PhD thesis, The University of Arizona.Google Scholar
Beresh, S. J., Wagner, J. L., Casper, K. M., DeMauro, E. P., Henfling, J. F. & Spillers, R. W. 2017 Spatial distribution of resonance in the velocity field for transonic flow over a rectangular cavity. AIAA J. 55 (5), 42034218.Google Scholar
Beresh, S. J., Wagner, J. L., Henfling, J. F., Spillers, R. W. & Pruett, B. O. M. 2015 Width effects in transonic flow over a rectangular cavity. AIAA J. 53 (12), 38313835.Google Scholar
Bilanin, A. J. & Covert, E. E. 1973 Estimation of possible excitation frequencies for shallow rectangular cavities. AIAA J. 11 (3), 347351.Google Scholar
Casper, K., Wagner, J., Beresh, S., Spillers, R. & Henfling, J.2016a Unsteady pressure sensitive paint measurements of resonance properties in complex cavities. AIAA Paper 2016-3315.Google Scholar
Casper, K. M., Wagner, J. L., Beresh, S. J., Henfling, J. F., Spillers, R. W. & Pruett, B. O. M. 2016b Complex geometry effects on cavity resonance. AIAA J. 54 (1), 320330.CrossRefGoogle Scholar
Daoud, M. M., Naguib, A., Bassioni, I., Abdelkhalek, M. & Ghoniem, Z. 2006 Microphone-array measurements of the floor pressure in a low-speed cavity flow. AIAA J. 44 (9), 20182023.CrossRefGoogle Scholar
DeMauro, E. P., Beresh, S. J., Wagner, J. L., Henfling, J. F. & Spillers, R. W.2016 Three-dimensional measurement of edge effects in open cavities of finite-span. AIAA Paper 2016-3314.Google Scholar
Flaherty, W., Reedy, T., Elliott, G., Austin, J., Schmit, R. & Crafton, J. 2014 Investigation of cavity flow using fast-response pressure sensitive paint. AIAA J. 52 (11), 24622470.Google Scholar
Garg, S. & Cattafesta, L. 2001 Quantitative schlieren measurements of coherent structures in a cavity shear layer. Exp. Fluids 30, 123134.Google Scholar
Gregory, J., Asai, K., Kameda, M., Liu, T. & Sullivan, J. 2008 A review of pressure-sensitive paint for high-speed and unsteady aerodynamics. Proc. Inst. Mech. Engrs G 222, 249290.Google Scholar
Gregory, J., Sakaue, H., Liu, T. & Sullivan, J. 2014 Fast pressure-sensitive paint for flow and acoustic diagnostics. Annu. Rev. Fluid Mech. 46, 303330.Google Scholar
Hankey, W. L. & Shang, J. S. 1980 Analyses of pressure oscillations in an open cavity. AIAA J. 18 (9), 892898.CrossRefGoogle Scholar
Hassan, M., Labraga, L. & Keirsbulck, L. 2007 Aero-acoustic oscillations inside large deep cavities. In 16th Australasian Fluid Mechanics Conference (AFMC), pp. 421428. School of Engineering, The University of Queensland.Google Scholar
Heller, H. H. & Bliss, D. B.1975 The physical mechanism for flow-induced pressure fluctuations in cavities and concepts for their suppression. AIAA Paper 75-491.Google Scholar
Kegerise, M. A., Spina, E. F. & Cattafesta, L. N. III 1999 An experimental investigation of flow-induced cavity oscillations. AIAA Paper 99-3705.Google Scholar
Larchevêque, L., Sagaut, P., , T. & Compte, P. 2004 Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number. J. Fluid Mech. 516, 265301.Google Scholar
Long, D. F. 2006 Spatial structure of cavity pressure fluctuations at transonic speeds. AIAA J. 44 (9), 19831992.Google Scholar
Murray, N. & Ukeiley, L.2005 Wall-pressure modes in subsonic cavity flows. AIAA Paper 2005-2801.Google Scholar
Roberts, D. A., Stokes, N. P., Quinn, M. K., Coppin, J. H. & Birch, T. J.2016 Evaluation of dynamic pressure-sensitive paint for improved analysis of cavity flows and CFD validation. AIAA Paper 2016-0311.Google Scholar
Rockwell, D. & Naudascher, E. 1978 Review-self-sustaining oscillations of flow past cavities. Trans. ASME J. Fluids Engng 100 (2), 152165.Google Scholar
Rossiter, J. E.1964 Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Reports and Memoranda 3438. Aeronautical Research Council.Google Scholar
Rowley, C. W. & Williams, D. R. 2006 Dynamics and control of high-Reynolds-number flow over open cavities. Annu. Rev. Fluid Mech. 38, 251276.CrossRefGoogle Scholar
Sellers, M. E., Nelson, M. A. & Crafton, J.2016 Dynamic pressure-sensitive paint demonstration in AEDC propulsion wind tunnel 16T. AIAA Paper 2016-1146.Google Scholar
Tam, C. & Block, P. 1978 On the tone and pressure oscillations induced by flow over rectangular cavities. J. Fluid Mech. 89, 373399.Google Scholar
Torrence, C. & Compo, G. P. 1998 A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79 (1), 6178.Google Scholar
Wagner, J., Beresh, S., Casper, K., DeMauro, E. & Arunajatesan, S. 2017 Resonance dynamics in compressible cavity flows using time-resolved velocity and surface pressure fields. J. Fluid Mech. 830, 494527.Google Scholar
Wagner, J. L., Beresh, S. J., Casper, K. M., DeMauro, E. P., Lynch, K. P., Spillers, R., Henfling, J. & Spitzer, S.2018 Effects of cavity width on resonance dynamics using planform time-resolved particle image velocimetry. AIAA Paper 2018-0359.Google Scholar
Wagner, J. L., Casper, K. M., Beresh, S. J., Henfling, J. F., Spillers, R. W. & Pruett, B. O. M. 2015 Mitigation of wind tunnel wall interactions in subsonic cavity flows. Exp. Fluids 59 (56), 112.Google Scholar