Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T16:32:12.582Z Has data issue: false hasContentIssue false

Spatial bifurcations of interfacial waves when the phase and group velocities are nearly equal

Published online by Cambridge University Press:  26 April 2006

T. J. Bridges
Affiliation:
Department of Mathematics, University of Surrey, Guildford, Surrey GU2 5XH, UK
P. Christodoulides
Affiliation:
Institut Non-Linéaire de Nice, Université de Nice–Sophia Antipolis, 1361 route des Lucioles, F-06560 Valbonne, France
F. Dias
Affiliation:
Institut Non-Linéaire de Nice, Université de Nice–Sophia Antipolis, 1361 route des Lucioles, F-06560 Valbonne, France

Abstract

Steady waves at the interface between two immiscible and inviscid fluids of differing density are studied. The governing equations are reformulated as a spatial Hamiltonian system leading to new variational principles for uniform states and travelling waves. Analytical methods based on the properties of the Hamiltonian structure and numerical methods are used to find new branches of steady nonlinear interfacial waves in the neighbourhood of the singularity c = cg. While the water-wave problem (upper fluid density negligible) near this singularity has received considerable attention the results for interfacial waves present some new features. The branches of travelling waves when plotted in ($\tilde{F}, \bar{S}$)-space, where $\tilde{F}$ and $\bar{S}$ are related to the energy flux and flow force respectively, show new bifurcations in the context of hydrodynamic waves even at very low amplitudes. The secondary bifurcations are explained by a spatial analogue of the superharmonic instability. An interesting analogy is also found between the spatial bifurcations of travelling waves and the Kelvin–Helmholtz instability. The new branches of waves occur at physically realizable values of the parameters and therefore could have implications for interfacial waves in applications.

Type
Research Article
Copyright
© 1995 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akylas, T. R. 1993 Envelope solitons with stationary crests. Phys. Fluids A 5, 789791.Google Scholar
Akylas, T. R. & Grimshaw, R. H. T. 1992 Solitary internal waves with oscillatory tails. J. Fluid Mech. 242, 279298.Google Scholar
Baesens, C. & MacKay, R. S. 1992 Uniformly travelling water waves from a dynamical systems viewpoint: some insights into bifurcations from Stokes’ family, J. Fluid Mech. 241, 333347.Google Scholar
Benjamin, T. B. 1984 Impulse, flow force and variational principles. IMA J. Appl. Maths 32, 368.Google Scholar
Benjamin, T. B. 1992 A new kind of solitary wave. J. Fluid Mech. 245, 40111.Google Scholar
Benjamin, T. B. & Bridges, T. J. 1992 Reappraisal of the Kelvin—Helmholtz problem. Part I: Hamiltonian structure, Part II: Travelling waves and bifurcations. Preprint, University of Oxford (J. Fluid Mech. submitted).Google Scholar
Benjamin, T. B. & Olver, P. J. 1982 Hamiltonian structure, symmetries and conservation laws for water waves. J. Fluid Mech. 125, 137185.Google Scholar
Bontozoglou, V. & Hanratty, T. J. 1990 Capillary–gravity Kelvin–Helmholtz waves close to resonance. J. Fluid Mech. 217, 7191.Google Scholar
Bridges, T. J. 1990 Bifurcation of periodic solutions near a collision of eigenvalues of opposite signature. Math. Proc. Camb. Phil. Soc. 108, 575601.Google Scholar
Bridges, T. J. 1991 Stability of periodic solutions near a collision of eigenvalues of opposite signature. Math. Proc. Camb. Phil. Soc. 109, 375403.Google Scholar
Bridges, T. J. 1992a Hamiltonian bifurcations of the spatial structure for coupled nonlinear Schrödinger equations. Physica D 57, 375394.Google Scholar
Bridges, T. J. 1992b Spatial Hamiltonian structure, energy flux and the water-wave problem. Proc. R. Soc. Lond. A 439, 297315.Google Scholar
Bridges, T. J. 1994 Hamiltonian spatial structure for 3D water-waves relative to a moving frame of reference. J. Nonlinear Sci. 4, 221251.Google Scholar
Bridges, T. J. & Mielke, A. 1995 A proof of the Benjamin—Feir instability. Arch. Rat. Mech. Anal. (to appear).Google Scholar
Bryden, H. L. & Kinder, T. H. 1991 Steady two-layer exchange through the Straight of Gibraltar. Deep-Sea Res. 38 (Supplement 1), S445S463.Google Scholar
Deprit, A. & Henrard, J. 1968 A manifold of periodic orbits. Adv. Astron. Astrophys. 6, 1124.Google Scholar
Dias, F. & Bridges, T. J. 1994 Geometric aspects of spatially periodic interfacial waves. Stud. Appl. Maths 93, 93132.Google Scholar
Dias, F. & Iooss, G. 1993 Gravity—capillary solitary waves with damped oscillations. Physica D 65, 399423.Google Scholar
Dias, F. & Iooss, G. 1994 Ondes solitaires ‘noires’ à l'interface entre deux fluides en présence de tension superficielle. C. R. Acad. Sci. Paris I 319, 8993.Google Scholar
Gargett, A. E. & Hughes, B. A. 1972 On the interactions of surface and internal waves. J. Fluid Mech. 52, 179191.Google Scholar
Golubitsky, M. & Schaeffer, D. 1985 Singularities and Groups in Bifurcation Theory, Vol. I. Springer.
Hogan, S. J. 1981 Relationships between integral properties of gravity—capillary interfacial waves. Phys. Fluids 24, 774775.Google Scholar
Hogan, S. J. 1983 Energy flux in capillary-gravity waves. Phys. Fluids 26, 12061209.Google Scholar
Looss, G. & Kirchgässner, K. 1990 Bifurcation d'ondes solitaires en présence d'une faible tension superficielle’. C. R. Acad. Sci. Paris I 311, 265268.Google Scholar
Looss, G. & Pérouème, M.-C. 1993 Perturbed homoclinic solutions in reversible 1:1 resonance vector fields. J. Diffl Equat. 102, 6288.Google Scholar
Koop, C. G. & Redekopp, L. G. 1981 The interaction of long and short internal gravity waves: theory and experiment. J. Fluid Mech. 111, 367409.Google Scholar
Longuet-Higgins, M. S. 1985 Bifurcation in gravity waves. J. Fluid Mech. 151, 457475.Google Scholar
Longuet-Higgins, M. S. 1993 Capillary—gravity waves of solitary type and envelope solitons on deep water. J. Fluid Mech. 252, 703711.Google Scholar
Meer, J. C. van der 1985 The Hamiltonian Hopf Bifurcation, Lecture Notes in Mathematics vol. 1160. Springer.
Mehrota, S. C. & Kelly, R. E. 1973 On the question of non-uniqueness of internal hydraulic jumps and drops in a two-fluid system. Tellus 25, 560567.Google Scholar
Mielke, A. 1991 Hamiltonian and Lagrangian Flows On Center Manifolds, Lecture Notes in Mathematics, vol. 1489. Springer.
Peregrine, D. H. 1976 Interactions of water waves and currents. Adv. Appl. Mech. 16, 9117.Google Scholar
Peregrine, D. H. & Thomas, G. P. 1979 Finite-amplitude deep-water waves on currents. Phil. Trans. R. Soc. Lond. A 292, 371390.Google Scholar
Pouliquen, O., Chomaz, J. M. & Huerre, P. 1994 Propagating Holmboe waves at the interface between two immiscible fluids. J. Fluid Mech. 266, 277302.Google Scholar
Pullin, D. I. & Grimshaw, R. H. 1983 Nonlinear interfacial progressive waves near a boundary in a Boussinesq fluid. Phys. Fluids 26, 897905.Google Scholar
Saffman, P. G. 1985 The superharmonic instability of finite-amplitude water waves. J. Fluid Mech. 159, 169174.Google Scholar
Saffman, P. G. & Yuen, H. C. 1982 Finite-amplitude interfacial waves in the presence of a current. J. Fluid Mech. 123, 459476.Google Scholar
Thorpe, S. A. 1969 Experiments on the instability of stratified shear flows: immiscible fluids. J. Fluid Mech. 39, 2548.Google Scholar
Vanden-Broeck, J.-M. & Dias, F. 1992 Gravity–capillary solitary waves in water of infinite depth and related free surfaced flows. J. Fluid Mech. 240, 549557.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley-Interscience.
Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. Zh. Prikl. Mekh. Fiz. 9, 8694 (English transl: J. Appl. Mech. Tech. Phys. 2, 190–194).Google Scholar
Zufiria, J. A. 1987 Symmetry breaking in periodic and solitary gravity–capillary waves on water of finite depth. J. Fluid Mech. 184, 183206.Google Scholar