Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-20T07:57:23.588Z Has data issue: false hasContentIssue false

Solutions of the Navier-Stokes equations for vortex breakdown

Published online by Cambridge University Press:  29 March 2006

W. J. Grabowski
Affiliation:
Flow Research Inc., Los Angeles, California 90045
S. A. Berger
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley

Abstract

A numerical investigation of vortex breakdown has been undertaken in an attempt to understand its properties, and the mechanisms responsible for it. Solutions of the full steady axisymmetric Navier—Stokes equations for breakdown in an unconfined viscous vortex have been obtained for core Reynolds numbers up to 200, for a two-parameter family of assumed upstream velocity distributions. Diffusion and convection of vorticity away from the vortex core, and the strong coupling between the circumferential and axial velocity fields in highly-swirling flows, are shown to lead to stagnation and reversal of the axial flow near the axis. The various theories of vortex breakdown are considered in light of the present numerical solutions.

Type
Research Article
Copyright
© 1976 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, T. B. 1962 J. Fluid Mech. 14, 593.
Benjamin, T. B. 1965a Trans. A.S.M.E., J. Basic Engng, 87, 518.
Benjamin, T. B. 1965b Trans. A.S.M.E., J. Basic Engng, 87, 1091.
Benjamin, T. B. 1967 J. Fluid Mech. 28, 65.
Bossel, H. H. 1967 University of California, Berkeley, College of Engineering, Rep. AS-67-14.
Bossel, H. H. 1971 A.I.A.A. J. 9, 2027.
Chorin, A. J. 1967 J. Comp. Phys. 2, 12.
Fortin, M., Peyret, R. & Temam, R. 1971 J. Méc. 10, 357.
Gartshore, I. S. 1962 N.R.C. (Canada) Aero. Rep. LR-343.
Gartshore, I. S. 1963 N.R.C. (Canada) Aero. Rep. LR-378.
Grabowski, W. J. 1974 University of California, Berkeley, College of Engineering, Rep. FM-74-6.
Hall, M. G. 1966 Prog. Aero. Sci. 7, 53.
Hall, M. G. 1967 Proc. Heat Transfer Fluid Mech. Inst. p. 319.
Hall, M. G. 1972 Ann. Rev. Fluid Mech. 4, 195.
Harvey, J. K. 1962 J. Fluid Mech. 14, 585.
Hirsch, R. S. & Rudy, D. H. 1974 J. Comp. Phys. 16, 304.
Hummel, D. 1965 Z. Flugwiss. 13, 158.
Kirkpatrick, C. L. I. 1964 Brit. A.R.C. CP 821.
Kopecky, R. M. & Torrance, K. E. 1973 Computers and Fluids, 1, 289.
Lavan, Z., Nielsen, H. & Fejer, A. A. 1969 Phys. Fluids, 12, 1747.
Ludwieg, H. 1965 Z. Flugwiss. 13, 437.
Mager, A. 1972 J. Fluid Mech. 55, 609.
Pao, Y. H. & Daugherty, R. J. 1969 Boeing Scientific Res. Lab. D1-82-0822.
Peaceman, D. W. & Rachford, H. H. 1955 J. Soc. Indust. Appl. Math. 3, 28.
Plows, W. H. 1968 Phys. Fluids, 11, 1593.
Randall, J. D. & Leibovich, S. 1973 J. Fluid Mech. 58, 495.
Roache, P. J. 1972 Computational Fluid Dynamics. Albuquerque, N.M.: Hermosa Publishers.
Sarpkaya, T. 1971a J. Fluid Mech. 45, 545.
Sarpkaya, T. 1971b A.I.A.A. J. 9, 1792.
Sarpkaya, T. 1974 A.I.A.A. J. 12, 602.
Squire, H. B. 1960 Imperial College, Department of Aeronautics, Rep. no. 102.
Torrance, K. E. 1968 J. Res. N.B.S. B, 72, 281.
Torrance, K. E. & Kopecky, R. M. 1971 N.A.S.A. CR-1867.