Published online by Cambridge University Press: 09 February 2005
Numerical solutions to the steady two-dimensional compressible Euler equations corresponding to a compressible analogue of the Mallier & Maslowe (Phys. Fluids, vol. A 5, 1993, p. 1074) vortex are presented. The steady compressible Euler equations are derived for homentropic flow and solved using a spectral method. A solution branch is parameterized by the inverse of the sound speed at infinity, $c_{\infty}^{-1}$, and the mass flow rate between adjacent vortex cores of the corresponding incompressible solution, $\epsilon$. For certain values of the mass flux, the solution branches followed numerically were found to terminate at a finite value of $c_{\infty}^{-1}$. Along these branches numerical evidence for the existence of extensive regions of smooth steady transonic flow, with local Mach numbers as large as 1.276, is presented.