Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T04:42:38.934Z Has data issue: false hasContentIssue false

Slip flow past a gas–liquid interface with embedded solid particles

Published online by Cambridge University Press:  17 January 2017

A. Vidal
Affiliation:
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
L. Botto*
Affiliation:
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
*
Email address for correspondence: [email protected]

Abstract

We simulate shear flow past a stationary monolayer of spherical particles embedded in a flat gas–liquid interface. This problem is relevant to the understanding of the microhydrodynamics of particle-laden interfacial structures, including particle-laden drops, bubbles and foams. The combination of the free-shear condition at the gas–liquid interface and the no-slip condition at the particle surfaces gives rise to a velocity slip at the particle-laden interface. We study the characteristics of the flow near the monolayer, focusing on slip velocity, slip length and interfacial shear stress. Two microstructures are compared: a square array, and a reticulated array mimicking a percolating network of aggregated particles. We demonstrate that the scaling laws for the dependence of the slip length on solid area fraction developed for flow past superhydrophobic microstructured surfaces apply to the case of interfacial particles. The calculated slip lengths are in general smaller that those reported for microstructured superhydrophobic surfaces. This difference, which is due to the significant protrusion of the spherical particles in the liquid, can be accounted for in the case of the square array by an approximate argument. For a given area fraction, the reticulated array yields a larger slip length than the square array. We analyse the hydrodynamic forces acting on the particles, and the corresponding tangential stress exerted by the bulk ‘subphase’.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aveyard, R., Clint, J. H., Nees, D. & Paunov, V. N. 2000 Compression and structure of monolayers of charged latex particles at air/water and octane/water interfaces. Langmuir 16 (4), 19691979.Google Scholar
Batchelor, G. K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Binks, B. P. 2002 Particles as surfactants: similarities and differences. Curr. Opin. Colloid Interface Sci. 7 (1), 2141.Google Scholar
Binks, B. P. & Horozov, T. S. 2006 Colloidal Particles at Liquid Interfaces. Cambridge University Press.Google Scholar
Bluemink, J. J., Lohse, D., Prosperetti, A. & Van Wijngaarden, L. 2008 A sphere in a uniformly rotating or shearing flow. J. Fluid Mech. 600, 201233.Google Scholar
Bluemink, J. J., Lohse, D., Prosperetti, A. & Van Wijngaarden, L. 2010 Drag and lift forces on particles in a rotating flow. J. Fluid Mech. 643, 131.Google Scholar
Boniello, G., Blanc, C., Fedorenko, D., Medfai, M., Mbarek, N. B., In, M., Gross, M., Stocco, A. & Nobili, M. 2015 Brownian diffusion of a partially wetted colloid. Nat. Mater. 14, 908911.CrossRefGoogle ScholarPubMed
Botto, L. & Prosperetti, A. 2012 A fully resolved numerical simulation of turbulent flow past one or several spherical particles. Phys. Fluids 24 (1), 013303.Google Scholar
Bournival, G., Ata, S. & Wanless, E. J. 2015 The roles of particles in multiphase processes: particles on bubble surfaces. Adv. Colloid Interface Sci. 225, 114133.CrossRefGoogle ScholarPubMed
Brenner, H. 2013 Interfacial Transport Processes and Rheology. Elsevier.Google Scholar
Buttinoni, I., Zell, Z. A., Squires, T. M. & Isa, L. 2015 Colloidal binary mixtures at fluid–fluid interfaces under steady shear: structural, dynamical and mechanical response. Soft Matt. 11 (42), 83138321.Google Scholar
Dani, A., Keiser, G., Yeganeh, M. S. & Maldarelli, C. 2015 Hydrodynamics of particles at an oil–water interface. Langmuir 31 (49), 1329013302.Google Scholar
Danov, K., Aust, R., Durst, F. & Lange, U. 1995 Influence of the surface viscosity on the hydrodynamic resistance and surface diffusivity of a large Brownian particle. J. Colloid Interface Sci. 175 (1), 3645.Google Scholar
Danov, K. D., Dimova, R. & Pouligny, B. 2000 Viscous drag of a solid sphere straddling a spherical or flat surface. Phys. Fluids 12 (11), 27112722.Google Scholar
Davis, A. M. J. & Lauga, E. 2009 The friction of a mesh-like super-hydrophobic surface. Phys. Fluids 21 (11), 113101.Google Scholar
Davis, A. M. J. & Lauga, E. 2010 Hydrodynamic friction of fakir-like superhydrophobic surfaces. J. Fluid Mech. 661, 402411.Google Scholar
De Gennes, P.-G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57 (3), 827863.Google Scholar
Deemer, A. R. & Slattery, J. C. 1978 Balance equations and structural models for phase interfaces. Intl J. Multiphase Flow 4 (2), 171192.CrossRefGoogle Scholar
Dörr, A. & Hardt, S. 2015 Driven particles at fluid interfaces acting as capillary dipoles. J. Fluid Mech. 770, 526.CrossRefGoogle Scholar
Dörr, A., Hardt, S., Masoud, H. & Stone, H. A. 2016 Drag and diffusion coefficients of a spherical particle attached to a fluid–fluid interface. J. Fluid Mech. 790, 607618.Google Scholar
Edwards, D. A. & Wasan, D. T. 1991 A micromechanical model of linear surface rheological behavior. Chem. Engng Sci. 46 (5), 12471257.Google Scholar
Fischer, Th. M., Dhar, P. & Heinig, P. 2006 The viscous drag of spheres and filaments moving in membranes or monolayers. J. Fluid Mech. 558, 451475.Google Scholar
Frijters, S., Günther, F. & Harting, J. 2012 Effects of nanoparticles and surfactant on droplets in shear flow. Soft Matt. 8 (24), 65426556.CrossRefGoogle Scholar
Gu, C. & Botto, L. 2016 Direct calculation of anisotropic surface stresses during deformation of a particle-covered drop. Soft Matt. 12 (3), 705716.Google Scholar
Happel, J. & Brenner, H. 2012 Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media, vol. 1. Springer Science and Business Media.Google Scholar
Horozov, T. S. 2008 Foams and foam films stabilised by solid particles. Curr. Opin. Colloid Interface Sci. 13 (3), 134140.Google Scholar
Hunter, T. N., Pugh, R. J., Franks, G. V. & Jameson, G. J. 2008 The role of particles in stabilising foams and emulsions. Adv. Colloid Interface Sci. 137 (2), 5781.Google Scholar
Irvine, W. T. M., Vitelli, V. & Chaikin, P. M. 2010 Pleats in crystals on curved surfaces. Nature 468 (7326), 947951.Google Scholar
Kotula, A. P. & Anna, S. L. 2012 Probing timescales for colloidal particle adsorption using slug bubbles in rectangular microchannels. Soft Matt. 8 (41), 1075910772.Google Scholar
Kumar, A., Datta, S. & Kalyanasundaram, D. 2016 Permeability and effective slip in confined flows transverse to wall slippage patterns. Phys. Fluids 28 (8), 082002.Google Scholar
Lauga, E. & Stone, H. A. 2003 Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 489, 5577.CrossRefGoogle Scholar
Lewandowski, E. P., Cavallaro, M. Jr, Botto, L., Bernate, J. C., Garbin, V. & Stebe, K. J. 2010 Orientation and self-assembly of cylindrical particles by anisotropic capillary interactions. Langmuir 26 (19), 1514215154.Google Scholar
Lishchuk, S. V. & Halliday, I. 2009 Effective surface viscosities of a particle-laden fluid interface. Phys. Rev. E 80 (1), 016306.Google ScholarPubMed
Liu, Q. & Prosperetti, A. 2011 Pressure-driven flow in a channel with porous walls. J. Fluid Mech. 679, 77100.Google Scholar
Luo, H. & Pozrikidis, C. 2008 Effect of surface slip on Stokes flow past a spherical particle in infinite fluid and near a plane wall. J. Engng Maths 62 (1), 121.Google Scholar
Martinez, A. C., Rio, E., Delon, G., Saint-Jalmes, A., Langevin, D. & Binks, B. P. 2008 On the origin of the remarkable stability of aqueous foams stabilised by nanoparticles: link with microscopic surface properties. Soft Matt. 4 (7), 15311535.Google Scholar
Ng, C.-O. & Wang, C. Y. 2009 Stokes shear flow over a grating: implications for superhydrophobic slip. Phys. Fluids 21 (1), 013602.CrossRefGoogle Scholar
Petkov, J. T., Denkov, N. D., Danov, K. D., Velev, O. D., Aust, R. & Durst, F. 1995 Measurement of the drag coefficient of spherical particles attached to fluid interfaces. J. Colloid Interface Sci. 172 (1), 147154.CrossRefGoogle Scholar
Poulichet, V. & Garbin, V. 2015 Ultrafast desorption of colloidal particles from fluid interfaces. Proc. Natl Acad. Sci. USA 112 (19), 59325937.Google Scholar
Pozrikidis, C. 2007 Particle motion near and inside an interface. J. Fluid Mech. 575, 333357.Google Scholar
Rapacchietta, A. V. & Neumann, A. W. 1977 Force and free-energy analyses of small particles at fluid interfaces: II. Spheres. J. Colloid Interface Sci. 59 (3), 555567.Google Scholar
Rothstein, J. P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89109.CrossRefGoogle Scholar
Sbragaglia, M. & Prosperetti, A. 2007 A note on the effective slip properties for microchannel flows with ultrahydrophobic surfaces. Phys. Fluids 19 (4), 043603.Google Scholar
Shang, J., Flury, M. & Deng, Y. 2009 Force measurements between particles and the air–water interface: implications for particle mobilization in unsaturated porous media. Water Resour. Res. 45, W06420.CrossRefGoogle Scholar
Shelley, S. R., Smith, J. D., Hibbins, A. P., Sambles, J. R. & Horsley, S. A. R. 2016 Fluid mobility over corrugated surfaces in the Stokes regime. Phys. Fluids 28 (8), 083101.Google Scholar
Sierakowski, A. J. 2016 GPU-centric resolved-particle disperse two-phase flow simulation using the Physalis method. Comput. Phys. Commun 207, 2434.Google Scholar
Singh, P. & Joseph, D. D. 2005 Fluid dynamics of floating particles. J. Fluid Mech. 530, 3180.Google Scholar
Stancik, E. J., Kouhkan, M. & Fuller, G. G. 2004 Coalescence of particle-laden fluid interfaces. Langmuir 20 (1), 9094.CrossRefGoogle ScholarPubMed
Subramaniam, A. B., Abkarian, M. & Stone, H. A. 2005 Controlled assembly of jammed colloidal shells on fluid droplets. Nat. Mater. 4 (7), 553556.Google Scholar
Subrahmanyam, T. V. & Forssberg, E. 1988 Froth stability, particle entrainment and drainage in flotation – a review. Intl J. Miner. Process. 23 (1), 3353.Google Scholar
Tambe, D. E. & Sharma, M. M. 1994 The effect of colloidal particles on fluid–fluid interfacial properties and emulsion stability. Adv. Colloid Interface Sci. 52, 163.Google Scholar
Tsapis, N., Dufresne, E. R., Sinha, S. S., Riera, C. S., Hutchinson, J. W., Mahadevan, L. & Weitz, D. A. 2005 Onset of buckling in drying droplets of colloidal suspensions. Phys. Rev. Lett. 94 (1), 018302.Google Scholar
Weber, M. E., Blanchard, D. C. & Syzdek, L. D. 1983 The mechanism of scavenging of waterborne bacteria by a rising bubble. Limnol. Oceanogr. 28 (1), 101105.Google Scholar
Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P. & Bocquet, L. 2007 Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries. Phys. Fluids 19 (12), 123601.CrossRefGoogle Scholar
Yunker, P. J., Still, T., Lohr, M. A. & Yodh, A. G. 2011 Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476 (7360), 308311.Google Scholar
Zhang, Z. & Prosperetti, A. 2005 A second-order method for three-dimensional particle simulation. J. Comput. Phys. 210 (1), 292324.Google Scholar