Published online by Cambridge University Press: 29 March 2006
The time-mean skin friction of the laminar boundary layer on a flat plate which is fixed at zero incidence in a fluctuating stream is investigated analytically. Flow oscillation amplitude outside the boundary layer is assumed constant along the surface. First, the small velocity-amplitude case is treated, and approximate formulae are obtained in the extreme cases when the frequency is low and high. Next, the finite velocity-amplitude case is treated under the condition of high frequency, and it is found that the formula obtained for the small-amplitude and high-frequency case is also valid. These results show that the increase of the mean skin friction reduces with frequency and is ultimately inversely proportional to the square of frequency.
The corresponding energy equation is also studied simultaneously under the condition of zero heat transfer between the fluid and the surface. It is confirmed that the time-mean surface temperature increases with frequency and tends to be proportional to the square root of frequency. Moreover, it is shown that the timemean recovery factor can be several times as large as that without flow oscillation.