Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T03:31:33.475Z Has data issue: false hasContentIssue false

Sinking inside the box

Published online by Cambridge University Press:  03 April 2013

David Pritchard*
Affiliation:
Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond St, Glasgow G1 1XH, Scotland, UK
*
Email address for correspondence: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Convection in a closed porous domain is a temporally and spatially complex flow which evolves over long time scales as the driving buoyancy contrasts are eliminated by mixing. In a contribution that combines numerical, experimental and asymptotic approaches, Hewitt, Neufeld & Lister (J. Fluid Mech., vol. 719, 2013, pp. 551–586) demonstrate that the essential dynamics can be captured by simple ‘box’ models, both when the buoyancy supply is imposed at the upper boundary and when the domain contains a moving interface between different fluids. This work provides insights into the dynamics and viability of schemes for the geological sequestration of CO2.

Type
Focus on Fluids
Copyright
©2013 Cambridge University Press 

References

Backhaus, S., Turitsyn, K. & Ecke, R. E. 2011 Convective instability and mass transport of diffusion layers in a Hele-Shaw geometry. Phys. Rev. Lett. 106, 104501.CrossRefGoogle Scholar
Boait, F. C., White, N. J., Bickle, M. J., Chadwick, R. A., Neufeld, J. A. & Huppert, H. E. 2012 Spatial and temporal evolution of injected CO2 at the Sleipner Field, North Sea. J. Geophys. Res. 117, B03309.Google Scholar
Farcas, A. & Woods, A. W. 2009 The effect of drainage on the capillary retention of CO2 in a layered permeable rock. J. Fluid Mech. 618, 349359.Google Scholar
Hewitt, D. R., Neufeld, J. A. & Lister, J. R. 2012 Ultimate regime of high Rayleigh number convection in a porous medium. Phys. Rev. Lett. 108, 224503.Google Scholar
Hewitt, D. R., Neufeld, J. A. & Lister, J. R. 2013 Convective shutdown in a porous medium at high Rayleigh number. J. Fluid Mech. 719, 551586.Google Scholar
Horton, C. W. & Rogers, F. T. 1945 Convection currents in a porous medium. J. Appl. Phys. 16, 367370.CrossRefGoogle Scholar
MacMinn, C. W., Szulczewski, M. L. & Juanes, R. 2011 CO2 migration in saline aquifers. Part 2. Capillary and solubility trapping. J. Fluid Mech. 688, 321351.CrossRefGoogle Scholar
Metz, B., Davidson, O., de Coninck, H. C., Loos, M. & & Meyer, L. 2005 IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press.Google Scholar
Mykkeltvedt, T. S. & Nordbotten, J. M. 2012 Estimating effective rates of convective mixing from commercial-scale injection. Environ. Earth Sci. 67, 527535.CrossRefGoogle Scholar
Nordbotten, J. M., Celia, M. A., Bachu, S. & Dahle, H. K. 2005 Semianalytical solution for CO2 leakage through an abandoned well. Environ. Sci. Technol. 39, 602611.Google Scholar
Otero, J., Dontcheva, L. A., Johnston, H., Worthing, R. A., Kurganov, A., Petrova, G. & Doering, C. R. 2004 High-Rayleigh-number convection in a fluid-saturated porous layer. J. Fluid Mech. 500, 263281.CrossRefGoogle Scholar
Riaz, A., Hesse, M., Tchelepi, H. A. & Orr, F. M. 2006 Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548, 87111.CrossRefGoogle Scholar