Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T19:24:15.187Z Has data issue: false hasContentIssue false

Simulation of sedimentation of two spheres with different densities in a square tube

Published online by Cambridge University Press:  29 May 2020

Deming Nie
Affiliation:
Institute of Fluid Mechanics, China Jiliang University, Hangzhou, Zhejiang310018, PR China
Jianzhong Lin*
Affiliation:
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou, Zhejiang310027, PR China
*
Email address for correspondence: [email protected]

Abstract

We simulated the sedimentations of two unequal spheres with different densities in a square tube for Galileo numbers (Ga) from 5 to 25, resulting in a Reynolds number range of $0.8\leqslant Re_{T}\leqslant 17.3$ based on the terminal settling velocity. The sedimentation of spheres with different densities is dynamically more complex than that of identical spheres. At high Ga the spheres oscillate in the centreline plane of the tube, where they are initially released from rest. By contrast, the spheres move to the diagonal or reverse–diagonal plane of the tube at low Ga, reaching a steady or periodic state depending on the density difference between them. A phase diagram illustrates the transitions between different sedimentation behaviours depending on Ga and the density difference. A possible mechanism for these behaviours is also presented. Furthermore, we compare two-dimensional (2-D) and three-dimensional computations for our system to attain a better understanding of the hydrodynamic interactions between two unequal spheres at low but finite Reynolds number. Comparing relative trajectories, periods of oscillation and flow features shows that 2-D circular cylinders oscillate much more strongly and frequently than spheres under the same flow conditions. In particular, spheres do not have the discontinuity in period that arises in the 2-D case from the change in rotation sign of a heavy particle.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aidun, C. K. & Ding, E. J. 2003 Dynamics of particle sedimentation in a vertical channel: period-doubling bifurcation and chaotic state. Phys. Fluids 15, 16121621.CrossRefGoogle Scholar
Aidun, C. K., Lu, Y. & Ding, E. 1998 Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287311.CrossRefGoogle Scholar
Adler, P. M. 1981 Interaction of unequal spheres. I. Hydrodynamic interaction: colloidal forces. J. Colloid Interface Sci. 84, 461473.CrossRefGoogle Scholar
Apte, S. V., Martin, M. & Patankar, N. A. 2009 A numerical method for fully resolved simulation (FRS) of rigid particle–flow interactions in complex flows. J. Comput. Phys. 228, 27122738.CrossRefGoogle Scholar
Batchelor, G. K. & Green, J. T. 1972 The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J. Fluid Mech. 56, 375400.CrossRefGoogle Scholar
Cao, C., Chen, S., Li, J., Liu, Z., Zha, L., Bao, S. & Zheng, C. 2015 Simulating the interactions of two freely settling spherical particles in Newtonian fluid using lattice-Boltzmann method. Appl. Maths Comput. 250, 533551.CrossRefGoogle Scholar
Chang, C. & Powell, R. L. 1993 Dynamic simulation of bimodal suspension of hydrodynamically interacting spherical particles. J. Fluid Mech. 253, 125.CrossRefGoogle Scholar
Darabaner, C. L. & Mason, S. G. 1967 Particle motions in sheared suspensions XXII: Interaction of rigid spheres (Experimental). Rheol. Acta 6, 273284.CrossRefGoogle Scholar
Dash, S. M. & Lee, T. S. 2015 Two spheres sedimentation dynamics in a viscous liquid column. Comput. Fluids 123, 218234.CrossRefGoogle Scholar
Davis, M. H. 1969 The slow translation and rotation of two unequal spheres in a viscous fluid. Chem. Engng Sci. 24, 17691776.CrossRefGoogle Scholar
Feng, J., Hu, H. H. & Joseph, D. D. 1994 Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 1. Sedimentation. J. Fluid Mech. 261, 95134.CrossRefGoogle Scholar
Fortes, A., Joseph, D. D. & Lundgren, T. S. 1987 Nonlinear mechanics of fluidization of beds of spherical particles. J. Fluid Mech. 177, 467483.CrossRefGoogle Scholar
Fornari, W., Ardekani, M. & Brandt, L. 2017 Clustering and increased settling speed of oblate particles at finite Reynolds number. J. Fluid Mech. 848, 696721.CrossRefGoogle Scholar
Glowinski, R., Pan, T. W., Hesla, T. I., Joseph, D. D. & Périaux, J. 2001 A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169, 363426.CrossRefGoogle Scholar
Huisman, S. G., Barois, T., Bourgoin, M., Chouippe, A., Doychev, T, Huck, P., Morales, C. E., Uhlmann, M. & Volk, R. 2016 Columnar structure formation of a dilute suspension of settling spherical particles in a quiescent fluid. Phys. Rev. Fluids 1, 074204.CrossRefGoogle Scholar
Jenny, M., Dušek, J. & Bouchet, G. 2004 Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. J. Fluid Mech. 508, 201239.CrossRefGoogle Scholar
Kulkarni, P. M. & Morris, J. F. 2008 Pair-sphere trajectories in finite-Reynolds-number shear flow. J. Fluid Mech. 596, 413435.CrossRefGoogle Scholar
Lallemand, P. & Luo, L. S. 2003 Lattice Boltzmann method for moving boundaries. J. Comput. Phys. 184, 406421.CrossRefGoogle Scholar
Lee, L.-H., Huang, Z. & Chiew, Y.-M. 2015 An extrapolation-based boundary treatment for using the lattice Boltzmann method to simulate fluid-particle interaction near a wall. Eng. Appl. Comput. Fluid Mech. 9, 370381.Google Scholar
Mei, R., Yu, D., Shyy, W. & Luo, L.-S. 2002 Force evaluation in the lattice Boltzmann method involving curved geometry. Phys. Rev. E 65, 041203.CrossRefGoogle ScholarPubMed
Mukundakrishnan, K., Hu, H. H. & Ayyaswamy, P. S. 2008 The dynamics of two spherical particles in a confined rotating flow: pedalling motion. J. Fluid Mech. 599, 169204.CrossRefGoogle Scholar
Navardi, S., Bhattacharya, S. & Wu, H. 2015 Stokesian simulation of two unequal spheres in a pressure-driven creeping flow through a cylinder. Comput. Fluids 121, 145163.CrossRefGoogle Scholar
Nguyen, N. Q. & Ladd, A. J. C. 2002 Lubrication corrections for lattice-Boltzmann simulation of particle suspensions. Phys. Rev. E 66, 046708.CrossRefGoogle Scholar
Nie, D. M. & Lin, J. Z. 2019 Discontinuity in the sedimentation system with two particles having different densities in a vertical channel. Phys. Rev. E 99, 053112.CrossRefGoogle Scholar
Nie, D. M., Lin, J. Z. & Chen, R. Q. 2016 Grouping behavior of coaxial settling particles in a narrow channel. Phys. Rev. E 93, 013114.CrossRefGoogle Scholar
Nie, D. M., Lin, J. Z. & Gao, Q. 2017 Settling behavior of two particles with different densities in a vertical channel. Comput. Fluids 156, 353367.CrossRefGoogle Scholar
Nie, D. M., Lin, J. Z. & Zheng, M. J. 2014 Direct numerical simulation of multiple particles sedimentation at an intermediate Reynolds number. Commun. Comput. Phys. 16, 675698.CrossRefGoogle Scholar
Qian, Y. H. 1992 Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17, 479484.CrossRefGoogle Scholar
Suzuki, K. & Inamuro, T. 2013 A higher-order immersed boundary–lattice Boltzmann method using a smooth velocity field near boundaries. Comput. Fluids 76, 105115.CrossRefGoogle Scholar
ten Cate, A., Nieuwstad, C. H., Derksen, J. J. & Van den Akker, H. E. A. 2002 Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity. Phys. Fluids 14, 40124025.CrossRefGoogle Scholar
Verjus, R., Guillou, S., Ezersky, A. & Angilella, J.-R. 2016 Chaotic sedimentation of particle pairs in a vertical channel at low Reynolds number: multiple states and routes to chaos. Phys. Fluids 28, 123303.CrossRefGoogle Scholar
Wacholder, E. & Sather, N. F. 1974 The hydrodynamic interaction of two unequal spheres moving under gravity through quiescent viscous fluid. J. Fluid Mech. 65, 417437.CrossRefGoogle Scholar
Yacoubi, A. E., Xu, S. & Wang, Z. J. 2012 Computational study of the interaction of freely moving particles at intermediate Reynolds numbers. J. Fluid Mech. 705, 134148.CrossRefGoogle Scholar
Yin, X. & Koch, D. L. 2007 Hindered settling velocity and microstructure in suspensions of solid spheres with moderate Reynolds numbers. Phys. Fluids 19, 093302.CrossRefGoogle Scholar