Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-18T15:47:28.806Z Has data issue: false hasContentIssue false

A simple turbulence closure hypothesis for the triple-velocity correlation functions in homogeneous isotropic turbulence

Published online by Cambridge University Press:  20 April 2006

J. A. Domaradzki
Affiliation:
Geophysical Fluid Dynamics Program, Princeton University, New Jersey 08540 Permanent address: Institute of Geophysics, Warsaw University, Poland.
G. L. Mellor
Affiliation:
Geophysical Fluid Dynamics Program, Princeton University, New Jersey 08540

Abstract

A simple two-point closure scheme for homogeneous axisymmetric turbulence is developed. For the isotropic case it is essentially an eddy-viscosity assumption in real space for the Kármán-Howarth equation. The eddy-viscosity function for large internal Reynolds numbers is derived from Kolmogoroff's 1941 theory. For moderate Reynold's numbers of order 102, approximately the same expression for the eddy-viscosity function is determined from experimental data. The resulting closed equation for the double-correlation function is solved numerically for both large and moderate Reynolds numbers, and the results are compared with experimental data. Self-similar solutions of the basic equation predict turbulent energy decay inversely proportional to time. It is shown that the departure from this ‘initial-period decay law’ observed in laboratory data is due to the behaviour of grid-produced correlation functions for large separation distances.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A., Satyaprakash, B. R. & Chambers, A. J. 1982 Phys. Fluids 25, 1.
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Batchelor, G. K. & Proudman, I. 1956 Phil. Trans. R. Soc. Lond. A 248, 369.
Batchelor G. K. & Townsend, A. A. 1948 Proc. R. Soc. Lond A 199, 527.
Champagne, F. H. 1978 J. Fluid Mech. 86, 67.
Comte-Bellot, G. & Corrsin, S. 1971 J. Fluid Mech. 48, 273.
Dickey, T. D. & Mellor, G. L. 1979 Phys. Fluids 22, 1029.
Dickey, T. D. & Mellor, G. L. 1980 J. Fluid Mech. 99, 13.
Dingle, R. B. 1973 Asymptotic Expansions. Academic.
Hasselmann, K. 1958 Deutsche hydrogr. Z. 11, 207.
Hinze, J. O. 1959 Turbulence. McGraw-Hill.
Kolmogoroff, A. N. 1941 C.R. Acad. Sci. USSR 30, 301.
Larcheveque, M. & Lesieur, M. 1981 J. Méc. 20, 113.
Lesieur, M. & Schertzer, D. 1978 J. Méc. 17, 609.
Lighthill, M. J. 1958 Introduction to Fourier Analysis and Generalized Functions. Cambridge University Press.
Lin, C. C. 1960 Proc. NAS 46, 566.
Monin, A. S. & Yaglom, A. M. 1971 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. I. MIT Press.
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. II. MIT Press.
Orszag, S. A. 1977 Statistical theory of turbulence. In Fluid Dynamics: Les Houches 1973 (ed. R. Balian & J.-L. Peube). Gordon & Breach.
Rose, H. A. & Sulem, P. L. 1978 J. Phys. (Paris) 39, 441.
Saffman, P. G. 1967 Phys. Fluids 10, 1349.
Stewart, R. W. & Townsend, A. A. 1951 Phil. Trans. R. Soc. Lond. A 243, 359.
Van Atta, C. W. & Chen, W. Y. 1970 J. Fluid Mech. 44, 145.
Yaglom, A. M. 1981 Izv. Acad. Sci. USSR, Phys. Atmos. Ocean. 17, 1235 (in Russian).