Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T11:32:55.359Z Has data issue: false hasContentIssue false

Short-wavelength local instabilities of a circular Couette flow with radial temperature gradient

Published online by Cambridge University Press:  29 March 2017

Oleg N. Kirillov*
Affiliation:
Northumbria University, Newcastle upon Tyne, NE1 8ST, UK Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina 8, Moscow 119991, Russia
Innocent Mutabazi
Affiliation:
Laboratoire Ondes et Milieux Complexes (LOMC), UMR 6294, CNRS-Université du Havre, Normandie Université, B.P. 540, 76058 Le Havre CEDEX, France
*
Email address for correspondence: [email protected]

Abstract

We perform a linearized local stability analysis for short-wavelength perturbations of a circular Couette flow with a radial temperature gradient. Axisymmetric and non-axisymmetric perturbations are considered and both the thermal diffusivity and the kinematic viscosity of the fluid are taken into account. The effect of asymmetry of the heating both on centrifugally unstable flows and on the onset of instabilities of centrifugally stable flows, including flows with a Keplerian shear profile, is thoroughly investigated. It is found that an inward temperature gradient destabilizes the Rayleigh-stable flow either via Hopf bifurcation if the liquid is a very good heat conductor or via steady state bifurcation if viscosity prevails over the thermal conductance.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acheson, D. J. & Gibbons, M. P. 1978 On the instability of toroidal magnetic fields and differential rotation in stars. Phil. Trans. R. Soc. Lond. A 289 (1363), 459500.Google Scholar
Ali, M. & Weidman, P. D. 1990 On the stability of circular Couette flow with radial heating. J. Fluid Mech. 220, 5384.CrossRefGoogle Scholar
Allilueva, A. I. & Shafarevich, A. I. 2015 Asymptotic solutions of linearized Navier–Stokes equations localized in small neighborhoods of curves and surfaces. Russ. J. Math. Phys. 22 (4), 421436.Google Scholar
Auer, M., Busse, F. H. & Clever, R. M. 1995 Three-dimensional convection driven by centrifugal buoyancy. J. Fluid Mech. 301, 371382.CrossRefGoogle Scholar
Balbus, S. A. & Potter, W. J. 2016 Surprises in astrophysical gasdynamics. Rep. Prog. Phys. 79, 066901.Google Scholar
Bilharz, H. 1944 Bemerkung zu einem Satze von Hurwitz. Z. Angew. Math. Mech. 24 (2), 7782.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.Google Scholar
Child, A., Kersalé, E. & Hollerbach, R. 2015 Nonaxisymmetric linear instability of cylindrical magnetohydrodynamic Taylor–Couette flow. Phys. Rev. E 92, 033011.Google ScholarPubMed
Dobrokhotov, S. Yu. & Shafarevich, A. I. 1992 Parametrix and the asymptotics of localized solutions of the Navier–Stokes equations in R3, linearized on a smooth flow. Math. Notes 51 (1), 4754.Google Scholar
Dubrulle, B., Dauchot, O., Daviaud, F., Longaretti, P.-Y., Richard, D. & Zahn, J.-P. 2005 Stability and turbulent transport in Taylor–Couette flow from analysis of experimental data. Phys. Fluids 17, 095103.Google Scholar
Eckhardt, B. & Yao, D. 1995 Local stability analysis along Lagrangian paths. Chaos, Solitons Fractals 5 (11), 20732088.CrossRefGoogle Scholar
Eckhoff, K. S. 1981 On stability for symmetric hyperbolic systems, I. J. Differ. Equ. 40 (1), 94115.Google Scholar
Economides, D. G. & Moir, G. 1980 Taylor vortices and the Goldreich–Schubert instability. Geophys. Astrophys. Fluid Dyn. 16 (1), 299317.CrossRefGoogle Scholar
Friedlander, S. & Vishik, M. M. 1995 On stability and instability criteria for magnetohydrodynamics. Chaos 5 (2), 416423.Google Scholar
Kirillov, O. N. 2013 Nonconservative Stability Problems of Modern Physics. De Gruyter.Google Scholar
Kirillov, O. N. 2016 Singular diffusionless limits of double-diffusive instabilities in magnetohy-drodynamics. Proc. R. Soc. Lond. A (submitted), arXiv:1610.06970v1.Google Scholar
Kirillov, O. N. & Stefani, F. 2013 Extending the range of the inductionless magnetorotational instability. Phys. Rev. Lett. 111, 061103.CrossRefGoogle ScholarPubMed
Kirillov, O. N., Stefani, F. & Fukumoto, Y. 2014 Local instabilities in magnetized rotational flows: a short-wavelength approach. J. Fluid Mech. 760, 591633.CrossRefGoogle Scholar
Kirillov, O. N. & Verhulst, F. 2010 Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella? Z. Angew. Math. Mech. 90 (6), 462488.Google Scholar
Kucherenko, V. V. & Kryvko, A. 2013 Interaction of Alfvén waves in the linearized system of magnetohydrodynamics for an incompressible ideal fluid. Russ. J. Math. Phys. 20 (1), 5667.Google Scholar
Lappa, M. 2012 Rotating Thermal Flows in Natural and Industrial Processes. Wiley.Google Scholar
Lifschitz, A. 1991 Short wavelength instabilities of incompressible three-dimensional flows and generation of vorticity. Phys. Lett. A 157 (8), 481487.Google Scholar
Lifshitz, A. E. 1987 Continuous spectrum in general toroidal systems (ballooning and Alfvén modes). Phys. Lett. A 122 (6), 350356.Google Scholar
Lifschitz, A. & Hameiri, E. 1991 Local stability conditions in fluid dynamics. Phys. Fluids A 3 (11), 26442651.Google Scholar
Lifschitz, A. & Hameiri, E. 1993 Localized instabilities of vortex rings with swirl. Commun. Pure Appl. Maths 46 (10), 13791408.Google Scholar
Lifschitz, A., Suters, W. H. & Beale, J. T. 1996 The onset of instability in exact vortex rings with swirl. J. Comput. Phys. 129 (1), 829.CrossRefGoogle Scholar
Lopez, J. M., Marques, F. & Avila, M. 2013 The Boussinesq approximation in rapidly rotating flows. J. Fluid Mech. 737, 5677.CrossRefGoogle Scholar
Marcus, P. S., Pei, S., Jiang, C.-H. & Hassanzadeh, P. 2013 Three-dimensional vortices generated by self-replication in stably stratified rotating shear flows. Phys. Rev. Lett. 111, 084501.Google Scholar
Maslov, V. P. 1986 Coherent structures, resonances, and asymptotic non-uniqueness for Navier–Stokes equations with large Reynolds numbers. Russ. Math. Surveys 41 (6), 2342.Google Scholar
Meyer, A., Yoshikawa, H. N. & Mutabazi, I. 2015 Effect of the radial buoyancy on a circular Couette flow. Phys. Fluids 27 (11), 114104.CrossRefGoogle Scholar
Mutabazi, I. & Bahloul, A. 2002 Stability analysis of a vertical curved channel flow with a radial temperature gradient. Theor. Comput. Fluid Dyn. 16 (1), 7990.Google Scholar
Nelson, R. P., Gressel, O. & Umurhan, O. M. 2013 Linear and non-linear evolution of the vertical shear instability in accretion discs. Mon. Not. R. Astron. Soc. 435 (3), 26102632.Google Scholar
Stefani, F. & Kirillov, O. N. 2015 Destabilization of rotating flows with positive shear by azimuthal magnetic fields. Phys. Rev. E 92, 051001.Google Scholar
Tuckerman, L. S. 2001 Thermosolutal and binary fluid convection as a 2 × 2 matrix problem. Physica D 156, 325363.Google Scholar
Urpin, V. & Brandenburg, A. 1998 Magnetic and vertical shear instabilities in accretion discs. Mon. Not. R. Astron. Soc. 294 (3), 399406.Google Scholar
Vinberg, E. B. 2003 A Course in Algebra. American Mathematical Society.Google Scholar
Yoshikawa, H. N., Nagata, M. & Mutabazi, I. 2013 Instability of the vertical annular flow with a radial heating and rotating inner cylinder. Phys. Fluids 25 (11), 114104.Google Scholar