Published online by Cambridge University Press: 09 December 2009
The single-mode Richtmyer–Meshkov instability is investigated using a first-order perturbation of the two-dimensional Navier–Stokes equations about a one-dimensional unsteady shock-resolved base flow. A feature-tracking local refinement scheme is used to fully resolve the viscous internal structure of the shock. This method captures perturbations on the shocks and their influence on the interface growth throughout the simulation, to accurately examine the start-up and early linear growth phases of the instability. Results are compared to analytic models of the instability, showing some agreement with predicted asymptotic growth rates towards the inviscid limit, but significant discrepancies are noted in the transient growth phase. Viscous effects are found to be inadequately predicted by existing models.