Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T18:02:01.477Z Has data issue: false hasContentIssue false

Shock-induced energy conversion of entropy in non-ideal fluids

Published online by Cambridge University Press:  11 February 2019

Emile Touber*
Affiliation:
Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
Nicolas Alferez
Affiliation:
Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK DynFluid Laboratory, Conservatoire National des Arts et Métiers, 151 blvd de l’Hôpital, 75013 Paris, France
*
Email address for correspondence: [email protected]

Abstract

From shaping cosmic structures in space to producing intense sounds in aircraft engines, shock waves in fluids ineluctably convert entropy fluctuations into swirling motions and sound waves. Studies of the corresponding conversion from internal energy to kinetic energy have so far been restricted to ideal (or idealised) fluids. Yet, many substances do not obey the ideal-gas law (including those in the above two examples). The present work demonstrates that non-ideal thermodynamic properties provide a remarkable degree of control over the conversion to solenoidal and dilatational kinetic energies. Of particular interest is the ability to suppress much of the emitted acoustic field whilst promoting mixing downstream of the shock. This is made possible by exploiting the convexity (or lack thereof) of the shock adiabats. Whilst illustrated here using dense vapours near the thermodynamic critical point, this ability to design and control specific shock-induced energy transfers extends beyond near-critical-point phenomena; e.g. shocked mixtures (high-speed dusty flows on Mars, nanoparticle formation in supersonic expanders for drug manufacturing), reacting fronts (supersonic combustion, rocket propulsion), ionising shocks (reentry systems, inertial confinement fusion) or fronts in active fluids (bacterial and crowd flows). This theoretical work, which demonstrates the predictive capabilities of linear theory, lays the foundation for future experimental investigations ultimately aimed at delivering novel shock-based flow-control strategies exploiting the thermodynamic properties of the fluid.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alferez, N. & Touber, E. 2017a One-dimensional refraction properties of compression shocks in non-ideal gases. J. Fluid Mech. 814, 185221.Google Scholar
Alferez, N. & Touber, E. 2017b Shock-induced energy transfers in dense gases. J. Phys.: Conf. Ser. 821 (1), 012019.Google Scholar
Bates, J. W. 2000 The D’yakov–Kontorovich instability of shock waves in real gases. Phys. Rev. Lett. 84, 11801183.Google Scholar
Bethe, H. A.1942 The theory of shock waves for an arbitrary equation of state. Rep. 545, Office of Scientific Research and Development.Google Scholar
Blokhin, A. & Trakhinin, Y. 2003 Stability of Strong Discontinuities in Magnetohydrodynamics and Electrohydrodynamics. Nova Science Publishers.Google Scholar
Bogey, C. & Bailly, C. 2004 A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194, 194214.Google Scholar
Borisov, A. A., Borisov, Al. A., Kutateladze, S. S. & Nakoryakov, V. E. 1983 Rarefaction shock wave near the critical liquid–vapour point. J. Fluid Mech. 126, 5973.Google Scholar
Brown, B. P. & Argrow, B. M. 2000 Application of Bethe–Zel’dovich–Thompson fluids in organic Rankine cycle engines. J. Propul. Power 16, 11181124.Google Scholar
Cinnella, P. & Congedo, P. M. 2007 Inviscid and viscous aerodynamics of dense gases. J. Fluid Mech. 580, 179217.Google Scholar
Cinnella, P. & Congedo, P. M. 2008 Optimal airfoil shapes for viscous transonic flows of Bethe–Zel’dovich–Thompson fluids. Comput. Fluids 37, 250264.10.1016/j.compfluid.2007.04.007Google Scholar
Colonna, P., Casati, E., Trapp, C., Mathijssen, T., Larjola, J., Turunen-Saaresti, T. & Uusitalo, A. 2015 Organic rankine cycle power systems: from the concept to current technology, applications, and an outlook to the future. Trans. ASME: J. Engng Gas Turbines Power 137 (10), 100801.Google Scholar
Colonna, P., Nannan, N. R. & Guardone, A. 2008 Multiparameter equations of state for siloxanes: [(CH3)3 - Si - O1/2]2 - [O - Si - (CH3)2] i=1, …, 3 , and [O - Si - (CH3)2]6 . Fluid Phase Equilib. 263, 115130.Google Scholar
Cook, A. W. & Cabot, W. H. 2004 A high-wavenumber viscosity for high-resolution numerical methods. J. Comput. Phys. 195, 594601.Google Scholar
Cramer, M. S. 1989 Shock splitting in single-phase gases. J. Fluid Mech. 199, 281296.Google Scholar
Cramer, M. S. & Crickenberger, A. B. 1991 The dissipative structure of shock waves in dense gases. J. Fluid Mech. 223, 325355.Google Scholar
Cramer, M. S. & Kluwick, A. 1984 On the propagation of waves exhibiting both positive and negative nonlinearity. J. Fluid Mech. 142, 937.Google Scholar
Cramer, M. S. & Park, S. 1999 On the suppression of shock-induced separation in Bethe–Zel’dovich–Thompson fluids. J. Fluid Mech. 393, 121.Google Scholar
Cramer, M. S. & Sen, R. 1986 Shock formation in fluids having embedded regions of negative nonlinearity. Phys. Fluids 29, 21812191.Google Scholar
Cramer, M. S. & Sen, R. 1987 Exact solutions for sonic shocks in van der Waals gases. Phys. Fluids 30, 377385.10.1063/1.866388Google Scholar
Donzis, D. A. 2012 Shock structure in shock-turbulence interactions. Phys. Fluids 24, 126101.Google Scholar
D’yakov, S. P. 1954 Shock wave stability. Zh. Eksp. Teor. Fiz. 27, 288295.Google Scholar
Erpenbeck, J. J. 1962 Stability of step shocks. Phys. Fluids 5, 11811187.Google Scholar
Fabre, D., Jacquin, L. & Sesterhenn, J. 2001 Linear interaction of a cylindrical entropy spot with a shock. Phys. Fluids 13 (8), 24032422.Google Scholar
Guardone, A. & Argrow, B. M. 2005 Nonclassical gasdynamic region of selected fluorocarbons. Phys. Fluids 17, 117.10.1063/1.2131922Google Scholar
Guardone, A., Parsani, M. & Vigevano, L. 2007 Numerical simulations of under-expanded nozzle flows of dense gases. In XVIII Congress of the Italian Association of Theoretical and Applied Mechanics (AIMETA), pp. 19.Google Scholar
Guardone, A., Spinelli, A. & Dossena, V. 2013 Influence of molecular complexity on nozzle design for an organic vapor wind tunnel. Trans. ASME: J. Engng Gas Turbines Power 135, 042307.Google Scholar
Guardone, A., Zamfirescu, C. & Colonna, P. 2010 Maximum intensity of rarefaction shock waves for dense gases. J. Fluid Mech. 642, 127146.Google Scholar
Hayes, W. D. 1960 The basic theory of gasdynamic discontinuities. In Fundamentals of Gas Dynamics (ed. Emmons, H. W.), High Speed Aerodynamics and Jet Propulsion, vol. 3, pp. 416481. Princeton University Press.Google Scholar
Head, A. J., De Servi, C., Casati, E., Pini, M. & Colonna, P. 2016 Preliminary design of the ORCHID: a facility for studying non-ideal compressible fluid dynamics and testing ORC expanders. In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, pp. V003T25A001V003T25A001. American Society of Mechanical Engineers.Google Scholar
Huete, C., Sánchez, A. L., Williams, F. & Urzay, J. 2015 Diffusion-flame ignition by shock-wave impingement on a supersonic mixing layer. J. Fluid Mech. 784, 74108.Google Scholar
Johnsen, E., Larsson, J., Bhagatwala, A. V., Cabot, W. H., Moin, P., Olson, B. J., Rawat, P. S., Shankar, S. K., Sjögreen, B., Yee, H. C., Zhong, X. & Lele, S. K. 2010 Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. J. Comput. Phys. 229, 12131237.Google Scholar
Kawai, S. & Lele, S. K. 2008 Localized artificial diffusivity scheme for discontinuity capturing on curvilinear meshes. J. Comput. Phys. 227, 94989526.Google Scholar
Kawai, S., Shankar, S. K. & Lele, S. K. 2010 Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows. J. Comput. Phys. 229 (5), 17391762.Google Scholar
Kida, S. & Orszag, S. A. 1990a Energy and spectral dynamics in forced compressible turbulence. J. Sci. Comput. 5 (2), 85125.10.1007/BF01065580Google Scholar
Kida, S. & Orszag, S. A. 1990b Enstrophy budget in decaying compressible turbulence. J. Sci. Comput. 5 (1), 134.Google Scholar
Kluwick, A. 1993 Transonic nozzle flow of dense gases. J. Fluid Mech. 247, 661688.10.1017/S0022112093000618Google Scholar
Kluwick, A. & Meyer, G. 2011 Viscous-inviscid interactions in transonic flows through slender nozzles. J. Fluid Mech. 672, 487520.Google Scholar
Kontorovich, V. M. 1957 To the question on stability of shock waves. Zh. Eksp. Teor. Fiz. 33, 15251526.Google Scholar
Kovásznay, L. S. G. 1953 Turbulence in supersonic flow. J. Aeronaut. Sci. 20, 657674.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Elsevier Science.Google Scholar
Larsson, J., Bermejo-Moreno, I. & Lele, S. K. 2013 Reynolds- and Mach-number effects in canonical shock-turbulence interaction. J. Fluid Mech. 717, 293321.Google Scholar
Larsson, J. & Lele, S. K. 2009 Direct numerical simulation of canonical shock/turbulence interaction. Phys. Fluids 21, 126101.Google Scholar
Lax, P. D. 1957 Hyperbolic systems of conservation laws II. Commun. Pure Appl. Maths 10, 537566.Google Scholar
Lax, P. D. 1971 Shock waves and entropy. Contributions to Functional Analysis, pp. 603634. Academia.Google Scholar
Lee, S., Lele, S. K. & Moin, P. 1991 Eddy shocklets in decaying compressible turbulence. Phys. Fluids 3, 657664.Google Scholar
Lee, S., Lele, S. K. & Moin, P. 1997 Interaction of isotropic turbulence with shock waves: effect of shock strength. J. Fluid Mech. 340, 225247.Google Scholar
Lele, S. K. 1994 Compressibility effects on turbulence. Annu. Rev. Fluid Mech. 26 (1), 211254.10.1146/annurev.fl.26.010194.001235Google Scholar
Lemmon, E. W., Huber, M. L. & McLinden, M. O.2013 NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, version 9.1, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg.Google Scholar
Liu, T. P. 1975 The Riemann problem for general systems of conservation laws. J. Differ. Equ. 18, 218234.Google Scholar
Liu, T. P. 1976 The entropy condition and the admissibility of shocks. J. Math. Anal. Appl. 53, 7888.Google Scholar
Mahesh, K., Lele, S. K. & Moin, P. 1997 The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J. Fluid Mech. 334, 353379.Google Scholar
McKenzie, J. F. & Westphal, K. O. 1968 Interaction of linear waves with oblique shock waves. Phys. Fluids 11, 23502362.Google Scholar
Menikoff, R. & Plohr, B. J. 1989 The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61, 75.10.1103/RevModPhys.61.75Google Scholar
Moore, F. K.1954 Unsteady oblique interaction of a shock wave with a plane disturbance. NACA Tech. Rep. 1165 NACA.Google Scholar
Nannan, N. R., Sirianni, C., Mathijssen, T., Guardone, A. & Colonna, P. 2016 The admissibility domain of rarefaction shock waves in the near-critical vapour–liquid equilibrium region of pure typical fluids. J. Fluid Mech. 795, 241261.10.1017/jfm.2016.197Google Scholar
Okong’o, N. & Bellan, J. 2002 Consistent boundary conditions for multicomponent real gas mixtures based on characteristic waves. J. Comput. Phys. 176 (2), 330344.Google Scholar
Oleinik, O. A. 1959 Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation. Usp. Mat. Nauk 14, 165170.Google Scholar
Quadros, R., Sinha, K. & Larsson, J. 2016 Turbulent energy flux generated by shock/homogeneous-turbulence interaction. J. Fluid Mech. 796, 113157.Google Scholar
Quartapelle, L., Castelletti, L., Guardone, A. & Quaranta, G. 2003 Solution of the Riemann problem of classical gasdynamics. J. Comput. Phys. 190, 118140.Google Scholar
Ribner, H. S.1954 Convection of a pattern of vorticity through a shock wave. NACA Tech. Rep. 1164 NACA.Google Scholar
Ribner, H. S. 1987 Spectra of noise and amplified turbulence emanating from shock-turbulence interaction. AIAA J. 25, 436442.Google Scholar
Rinaldi, E., Pecnik, R. & Colonna, P. 2016 Unsteady operation of a highly supersonic organic Rankine cycle turbine. J. Turbomach. 138 (12), 121010.Google Scholar
Ryu, J. & Livescu, D. 2014 Turbulence structure behind the shock in canonical shock–vortical turbulence interaction. J. Fluid Mech. 756, R1R13.Google Scholar
Sarkar, S., Erlebacher, G., Hussaini, M. Y. & Kreiss, H. O. 1991 The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473493.Google Scholar
Semenko, E. V. 2017 Linear problem of the shock wave disturbance in a non-classical case. Phys. Fluids 29 (6), 066101.Google Scholar
Semenko, E. V. & Semenko, T. I. 2017 Spontaneous emission in the linear problem of shock wave disturbance in a non-classical case. J. Phys.: Conf. Ser. 894 (1), 012083.Google Scholar
Shu, C.-W. & Osher, S. 1989 Efficient implementation of essentially non-oscillatory shock capturing schemes, II. J. Comput. Phys. 83, 3278.10.1016/0021-9991(89)90222-2Google Scholar
Span, R. 2000 Multiparameter Equations of State: An Accurate Source of Thermodynamic Property Data. Springer Science & Business Media.Google Scholar
Spinelli, A., Guardone, A., Cozzi, F., Carmine, M., Cheli, R., Zocca, M., Gaetani, P. & Dossena, V. 2015 Experimental observation of non-ideal nozzle flow of siloxane vapor MDM. 3rd International Seminar on ORC Power Systems, ASME ORC 2015.Google Scholar
Swan, G. W. & Fowles, G. R. 1975 Shock wave stability. Phys. Fluids 18, 2835.Google Scholar
Tam, C. K. W. 1995 Supersonic jet noise. Annu. Rev. Fluid Mech. 27 (1), 1743.Google Scholar
Tam, C. K. W. & Webb, J. C. 1993 Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262281.10.1006/jcph.1993.1142Google Scholar
Terashima, H., Kawai, S. & Koshi, M. 2013 Consistent numerical diffusion terms for simulating compressible multicomponent flows. Comput. Fluids 88, 484495.Google Scholar
Thompson, Ph. A. 1971 A fundamental derivative in gasdynamics. Phys. Fluids 14, 18431849.Google Scholar
Thompson, Ph. A. & Lambrakis, K. C. 1973 Negative shock waves. J. Fluid Mech. 60, 187208.Google Scholar
Touber, E. & Alferez, N. 2019 Selective shock-refraction properties in non-ideal fluids. In 31st International Symposium on Shock Waves 2. Springer International Publishing.Google Scholar
Wouchuk, J., Huete, R. L. C. & Velikovich, A. 2009 Analytical linear theory for the interaction of a planar shock wave with an isotropic turbulent vorticity field. Phys. Rev. E 79, 066315.Google Scholar
Yang, J., Kubota, T. & Zukoski, E. E. 1993 Applications of shock-induced mixing to supersonic combustion. AIAA J. 31 (5), 854862.Google Scholar
Zamfirescu, C., Guardone, A. & Colonna, P. 2008 Admissibility region for rarefaction shock waves in dense gases. J. Fluid Mech. 599, 363381.Google Scholar
Zel’dovich, Ya. B. 1946 On the possibility of rarefaction shock waves. Zh. Eksp. Teor. Fiz. 4, 363364.Google Scholar

Touber and Alferez supplementary movie 1

Refraction of an entropy spot in ideal gas at Mach 1.33907. See Figure 6 for details.

Download Touber and Alferez supplementary movie 1(Video)
Video 365 KB

Touber and Alferez supplementary movie 2

Refraction of an entropy spot in vdW gas at Mach 1.34900. See Figure 6 for details.

Download Touber and Alferez supplementary movie 2(Video)
Video 1.3 MB

Touber and Alferez supplementary movie 3

Refraction of an entropy spot in vdW gas at Mach 1.29222. See Figure 6 for details.

Download Touber and Alferez supplementary movie 3(Video)
Video 936.8 KB

Touber and Alferez supplementary movie 4

Refraction of an entropy spot in vdW gas at Mach 2.50000. See Figure 12 for details.

Download Touber and Alferez supplementary movie 4(Video)
Video 581.2 KB

Touber and Alferez supplementary movie 5

Refraction of an entropy spot in vdW gas at Mach 1.20000 (expansion shock). See Figure 15 for details.

Download Touber and Alferez supplementary movie 5(Video)
Video 922.5 KB