Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T14:54:36.812Z Has data issue: false hasContentIssue false

Shock propagation through a bubbly liquid in a deformable tube

Published online by Cambridge University Press:  15 February 2011

KEITA ANDO*
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
T. SANADA
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
K. INABA
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
J. S. DAMAZO
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
J. E. SHEPHERD
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
T. COLONIUS
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
C. E. BRENNEN
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
*
Present address: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798. Email address for correspondence: [email protected]

Abstract

Shock propagation through a bubbly liquid contained in a deformable tube is considered. Quasi-one-dimensional mixture-averaged flow equations that include fluid–structure interaction are formulated. The steady shock relations are derived and the nonlinear effect due to the gas-phase compressibility is examined. Experiments are conducted in which a free-falling steel projectile impacts the top of an air/water mixture in a polycarbonate tube, and stress waves in the tube material and pressure on the tube wall are measured. The experimental data indicate that the linear theory is incapable of properly predicting the propagation speeds of finite-amplitude waves in a mixture-filled tube; the shock theory is found to more accurately estimate the measured wave speeds.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Mechanical Engineering, Shizuoka University, Hamamatsu 432-8561, Japan.

Present address: Department of Mechanical Engineering and Science, Tokyo Institute of Technology, Tokyo 152-8550, Japan.

References

REFERENCES

Ando, K. 2010 Effects of polydispersity in bubbly flows. PhD thesis, California Institute of Technology. Available at: http://thesis.library.caltech.edu/5859/.Google Scholar
Ando, K., Colonius, T. & Brennen, C. E. 2009 Improvement of acoustic theory of ultrasonic waves in dilute bubbly liquids. J. Acoust. Soc. Am. 126, EL69EL74.CrossRefGoogle ScholarPubMed
Bergant, A. 2001 Developments in unsteady pipe flow friction modeling. J. Hydraul. Res. 39, 249257.CrossRefGoogle Scholar
Beylich, A. E. & Gülhan, A. 1990 On the structure of nonlinear waves in liquids with gas bubbles. Phys. Fluids A 2, 14121428.CrossRefGoogle Scholar
Brennen, C. E. 1994 Hydrodynamics of Pumps. Oxford University Press.Google Scholar
Brennen, C. E. 1995 Cavitation and Bubble Dynamics. Oxford University Press.CrossRefGoogle Scholar
Brennen, C. E. 2002 Fission of collapsing cavitation bubbles. J. Fluid Mech. 472, 153166.CrossRefGoogle Scholar
Brennen, C. E. 2005 Fundamentals of Multiphase Flow. Cambridge University Press.CrossRefGoogle Scholar
Campbell, I. J. & Pitcher, A. S. 1958 Shock waves in a liquid containing gas bubbles. Proc. R. Soc. Lond. A 243, 534545.Google Scholar
Cole, R. H. 1948 Underwater Explosions. Princeton University Press.CrossRefGoogle Scholar
Colonius, T., Hagmeijer, R., Ando, K. & Brennen, C. E. 2008 Statistical equilibrium of bubble oscillations in dilute bubbly flows. Phys. Fluids 20, 040902.CrossRefGoogle ScholarPubMed
Covas, D., Stoianov, I., Mano, J., Romas, H., Graham, N. & Maksimovic, C. 2004 The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part 1. Experimental analysis and creep characterization. J. Hydraul. Res. 42, 516530.CrossRefGoogle Scholar
Dashpande, V. S., Heaver, A. & Fleck, N. A. 2006 An underwater shock simulator. Proc. R. Soc. Lond. A 462, 10211041.Google Scholar
Delale, C. F., Nas, S. & Tryggvason, G. 2005 Direct numerical simulations of shock propagation in bubbly liquids. Phys. Fluids 17, 121705.CrossRefGoogle Scholar
Delale, C. F. & Tryggvason, G. 2008 Shock structure in bubbly liquids: comparison of direct numerical simulations and model equations. Shock Waves 17, 433440.CrossRefGoogle Scholar
Gally, M., Güney, M. & Rieutord, E. 1979 An investigation of pressure transients in viscoelastic pipes. J. Fluids Engng 101, 495499.CrossRefGoogle Scholar
Ghidaoui, M. S., Zhao, M., McInnis, D. A. & Axworthy, D. H. 2005 A review of water hammer theory and practice. Appl. Mech. Rev. 58, 4976.CrossRefGoogle Scholar
Gilmore, F. R. 1952 The collapse and growth of a spherical bubble in a viscous compressible liquid. Hydrodyn. Lab.Rep. 26–4. California Institute of Technology.Google Scholar
Inaba, K. & Shepherd, J. E. 2010 Flexural waves in fluid-filled tubes subject to axial impact. J. Press. Vessel Technol. 132, 021302.CrossRefGoogle Scholar
Johnsen, E. & Colonius, T. 2009 Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231262.CrossRefGoogle ScholarPubMed
Joukowsky, N. E. 1898 Memoirs of the Imperial Academy Society of St. Petersburg. Proc. Am. Water Works Assoc. 24, 341424.Google Scholar
Kameda, M. & Matsumoto, Y. 1996 Shock waves in a liquid containing small gas bubbles. Phys. Fluids 8, 322335.CrossRefGoogle Scholar
Kameda, M., Shimaura, N., Higashino, F. & Matsumoto, Y. 1998 Shock waves in a uniform bubbly flow. Phys. Fluids 10, 26612668.CrossRefGoogle Scholar
Kobori, T., Yokoyama, S. & Miyashiro, H. 1955 Propagation velocity of pressure wave in pipe line. Hitachi Hyoron 37, 3337.Google Scholar
Korteweg, D. J. 1878 Ueber die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Röhren. Ann. Phys. Chem. 5, 525542.CrossRefGoogle Scholar
Kuznetsov, V. V., Nakoryakov, V. E., Pokusaev, B. G. & Shreiber, I. R. 1978 Propagation of perturbations in a gas–liquid mixture. J. Fluid Mech. 85, 8596.CrossRefGoogle Scholar
Meissner, E. & Frank, P.-G. 1977 Influence of pipe material on the damping of water hammer. In Proc. 17th Congress of the International Association for Hydraulic Research, Baden-Baden, Germany.Google Scholar
Nagayama, K., Mori, Y. & Shimada, K. 2002 Shock Hugoniot compression curve for water up to 1 GPa by using a compressed gas gun. J. Appl. Phys. 91, 476482.CrossRefGoogle Scholar
Nigmatulin, R. I., Khabeev, N. S. & Hai, Z. N. 1988 Waves in liquids with vapour bubbles. J. Fluid Mech. 186, 85117.CrossRefGoogle Scholar
Noordzij, L. & van Wijngaarden, L. 1974 Relaxation effects, caused by relative motion, on shock waves in gas-bubble/liquid mixtures. J. Fluid Mech. 66, 115143.CrossRefGoogle Scholar
Pedley, T. J. 1980 The Fluid Mechanics of Large Blood Vessels. Cambridge University Press.CrossRefGoogle Scholar
Shepherd, J. E. & Inaba, K. 2009 Shock loading and failure of fluid-filled tubular structures. In Dynamic Failure of Materials and Structures (ed. Shukla, A., Ravichandran, G. & Rajapakse, Y. D. S.). Springer.Google Scholar
Skalak, R. 1956 An extension of the theory of water hammer. Trans. ASME 78, 105116.Google Scholar
Smereka, P. 2002 A Vlasov equation for pressure wave propagation in bubbly fluids. J. Fluid Mech. 454, 287325.CrossRefGoogle Scholar
Suo, L. & Wylie, E. B. 1990 Complex wavespeed and hydraulic transients in viscoelastic pipes. J. Fluids Engng 112, 496500.CrossRefGoogle Scholar
Thompson, P. A. 1972 Compressible Fluid Dynamics. McGraw-Hill.CrossRefGoogle Scholar
Tijsseling, A. S. 1996 Fluid–structure interaction in liquid-filled pipe systems: a review. J. Fluids Struct. 10, 109146.CrossRefGoogle Scholar
Tijsseling, A. S. 2007 Water hammer with fluid–structure interaction in thick-walled pipes. Comput. Struct. 85, 844851.CrossRefGoogle Scholar
Tijsseling, A. S., Lambert, M. F., Simpson, A. R., Stephens, M. L., Vítkovský, J. P. & Bergant, A. 2008 Skalak's extended theory of water hammer. J. Sound Vib. 310, 718728.CrossRefGoogle Scholar
Watanabe, M. & Prosperetti, A. 1994 Shock waves in dilute bubbly liquids. J. Fluid Mech. 274, 349381.CrossRefGoogle Scholar
van Wijngaarden, L. 1968 On the equations of motion for mixtures of liquid and gas bubbles. J. Fluid Mech. 33, 465474.CrossRefGoogle Scholar
vanWijngaarden, L. Wijngaarden, L. 1972 One-dimensional flow of liquids containing small gas bubbles. Annu. Rev. Fluid Mech. 4, 369396.Google Scholar
Wylie, E. B. & Streeter, V. L. 1993 Fluid Transients in Systems. Prentice Hall.Google Scholar
Zhang, Z. D. & Prosperetti, A. 1994 Ensemble-averaged equations for bubbly flows. Phys. Fluids 6, 29562970.CrossRefGoogle Scholar