Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T17:06:32.310Z Has data issue: false hasContentIssue false

Shock propagation in liquids containing bubbly clusters: a continuum approach

Published online by Cambridge University Press:  10 May 2012

H. Grandjean*
Affiliation:
ENSTA Bretagne, EA 4325, Laboratoire Brestois de Mécanique et des Systèmes, Brest F-29200, France
N. Jacques
Affiliation:
ENSTA Bretagne, EA 4325, Laboratoire Brestois de Mécanique et des Systèmes, Brest F-29200, France
S. Zaleski
Affiliation:
University Paris 06 and CNRS, UMR 7190, Institut Jean le Rond d’Alembert, Paris F-75005, France
*
Email address for correspondence: [email protected]

Abstract

The present work investigates the influence of bubble clustering on the propagation of shock waves in bubbly liquids. A continuum model is developed to describe the macroscopic response of a bubbly liquid with a cluster structure, using a two-step homogenization technique. The proposed methodology allows us to simulate shock wave propagation over long distances with a small computation time and to study the effect of bubble clustering on the shock structure. It is shown that the typical length of the shock profile is related to the global response of the clusters instead of the single-bubble dynamics, as in homogeneous bubbly flows. The accuracy of the proposed modelling is assessed through comparisons with axisymmetric simulations, in which clusters are directly specified, with given positions and sizes, and with experimental data.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ando, K., Colonius, T. & Brennen, C. E. 2011 Numerical simulation of shock propagation in a polydisperse bubbly liquid. Intl J. Multiphase Flow 37 (6), 596608.CrossRefGoogle Scholar
2. Arora, M., Ohl, C. D. & Lohse, D. 2007 Effect of nuclei concentration on cavitation cluster dynamics. J. Acoust. Soc. Am. 121 (6), 34323436.CrossRefGoogle ScholarPubMed
3. Belytschko, T., Liu, W. K. & Moran, B. 2000 Nonlinear Finite Elements for Continua and Structures. Wiley.Google Scholar
4. Beylich, A. E. & Gulhan, A. 1990 On the structure of non-linear waves in liquids with gas bubbles. Phys. Fluids A (2), 1412.CrossRefGoogle Scholar
5. Bremond, N., Arora, M., Ohl, C.-D. & Lohse, D. 2006 Controlled multibubble surface cavitation. Phys. Rev. Lett. 96 (224501-1, 224501-4), 1412.CrossRefGoogle ScholarPubMed
6. Brennen, C. E. 1995 Cavitation and Bubble Dynamics. Oxford University Press.CrossRefGoogle Scholar
7. Brennen, C. E. 2002 Fission of collapsing cavitation bubbles. J. Fluid Mech. 472, 153166.CrossRefGoogle Scholar
8. Brennen, C. E. 2005 Fundamentals of Multiphase Flows. Oxford University Press.CrossRefGoogle Scholar
9. Caballina, O., Climent, E. & Dusek, J. 2003 Two-way coupling simulations of instabilities in a plane bubble plume. Phys. Fluids 15 (6), 15351544.CrossRefGoogle Scholar
10. Calzavarini, E., Kerscher, M., Lohse, D. & Toschi, F. 2008 Dimensionality and morphology of particle and bubble clusters in turbulent flow. J. Fluid Mech. 607, 1324.CrossRefGoogle Scholar
11. Chahine, G. L. & Duraiswami, R. 1992 Dynamical interactions in a multibubble cloud. Trans. ASME: J. Fluids Engng 114, 680686.Google Scholar
12. Climent, E. & Magnaudet, J. 1997 Simulation d’écoulements induits par des bulles dans un liquide initialement au repos. C. R. Acad. Sci., Ser. IIb 324, 9198.Google Scholar
13. Climent, E. & Magnaudet, J. 1999 Large-scale simulations of bubble-induced convection in a liquid layer. Phys. Rev. Lett. 82, 48274830.CrossRefGoogle Scholar
14. Colonius, T., d’Auria, F. & Brennen, C. E. 2000 Acoustic saturation in bubbly cavitating flow adjacent to an oscillating wall. Phys. Fluids 12 (11), 27522761.CrossRefGoogle Scholar
15. Czarnota, C., Jacques, N., Mercier, S. & Molinari, A. 2008 Modelling of dynamics ductile fracture and application to the simulation of plate impact tests on tantalum. J. Mech. Phys. Solids 56 (4), 16241650.CrossRefGoogle Scholar
16. d’Agostino, L. & Brennen, C. E. 1983 On the acoustical dynamics of bubble clouds. In ASME Cavitation and Multiphase Flow Forum, pp. 72–75.Google Scholar
17. d’Agostino, L. & Brennen, C. E. 1989 Linearized dynamics of spherical bubble clouds. J. Fluid Mech. 199, 155176.CrossRefGoogle Scholar
18. d’Agostino, L., Brennen, C. E. & Acosta, A. 1988 Linearized dynamics of two dimensional bubbly and cavitating flows over slender surfaces. J. Fluid Mech. 192, 485.CrossRefGoogle Scholar
19. Delale, C. F., Nas, S. & Tryggvason, G. 2005 Direct numerical simulations of shock propagation in bubbly liquids. Phys. Fluids 17, 121705.CrossRefGoogle Scholar
20. Delale, C. F., Schnerr, G. H. & Sauer, J. 2001 Quasi-one-dimensional steady-state cavitating nozzle flows. J. Fluid Mech. 427, 167204.CrossRefGoogle Scholar
21. Delale, C. F. & Tryggvason, G. 2008 Shock structure in bubbly liquids: comparison of direct numerical simulations and model equations. Shock waves 17, 433440.CrossRefGoogle Scholar
22. Dontsov, V. E. 2005 Propagation of pressure waves in a gas–liquid medium with a cluster structure. J. Appl. Mech. Tech. Phys. 46 (3), 346354.CrossRefGoogle Scholar
23. Drumheller, D. S., Kipp, D. S. & Bedford, M. E. 1982 Transient wave propagation in bubbly liquids. J. Fluid Mech. 19, 347365.CrossRefGoogle Scholar
24. Fuster, D. & Colonius, T. 2011 Modelling of bubble clusters in compressible liquids. J. Fluid Mech. 688, 352389.CrossRefGoogle Scholar
25. Gavrilyuk, S. & Saurel, R. 2002 Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys. 175, 326360.CrossRefGoogle Scholar
26. Gurson, A. L. 1977 Continuum theory of ductile rupture by void nucleation and growth. Part 1. Yield criteria and flow rules for porous ductile media. Trans. ASME: J. Eng. Mater. Technol. 99 (2), 215.Google Scholar
27. Johnsen, E. & Colonius, T. 2009 Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231262.CrossRefGoogle ScholarPubMed
28. Johnson, J. N. 1981 Dynamic fracture and spallation in ductile solids. J. Appl. Phys. 52 (4), 28122825.CrossRefGoogle Scholar
29. Kameda, M. & Matsumoto, Y. 1996 Shock waves in a liquid containing small gas bubbles. Phys. Fluids 8 (2), 322335.CrossRefGoogle Scholar
30. Kameda, M., Shimaura, N., Higashino, F. & Matsumoto, Y. 1998 Shock waves in a uniform bubbly flow. Phys. Fluids 10 (10), 26612668.CrossRefGoogle Scholar
31. Kubota, A., Kato, H. & Yamaguchi, H. 1992 A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. J. Fluid Mech. 240, 5996.CrossRefGoogle Scholar
32. Lauterborn, W. & Kurz, T. 2010 Physics of bubble oscillations. Rep. Prog. Phys. 73, 106501.CrossRefGoogle Scholar
33. Markov, K. Z. 1999 Elementary micromechanics of heterogeneous media. In Heterogeneous Media: Modelling and Simulation, pp. 1162. Birkhauser.Google Scholar
34. Matsumoto, Y. & Yoshizawa, S. 2005 Behaviour of a bubble cluster in an ultrasound field. Intl J. Numer. Meth. Fluids 47 (6–7), 591601.CrossRefGoogle Scholar
35. Nasibullaeva, E. S & Akhatov, I. S. 2005 Dynamics of a bubble cluster in an acoustic field. Acoust. Phys. 51 (6), 705712.CrossRefGoogle Scholar
36. Nigmatulin, R. I. & Khabeev, N. S. 1974 Heat exchange between a gas bubble and a liquid. Fluid Dyn. 9, 890899.CrossRefGoogle Scholar
37. Noordzij, L. & van Wijngaarden, L. 1974 Relaxation effects, caused by relative motion, on shock waves in gas-bubble/liquid mixtures. J. Fluid Mech. 66, 115143.CrossRefGoogle Scholar
38. Ohashi, H., Matsumoto, Y., Ichikawa, Y. & Tsukiyama, T. 1990 Air/water two-phase flow test tunnel for airfoil studies. Exp. Fluids 8, 249256.CrossRefGoogle Scholar
39. Preston, A. T., Colonius, T. & Brennen, C. E. 2007 A reduced-order model of diffusive effects on the dynamics of bubbles. Phys. Fluids 19, 123302.CrossRefGoogle Scholar
40. Prosperetti, A., Crum, L. A. & Commander, K. W. 1988 Nonlinear bubble dynamics. J. Acoust. Soc. Am. 83 (2), 502514.CrossRefGoogle Scholar
41. Seo, J. H., Lele, S. K. & Tryggvason, G. 2010 Investigation and modeling of bubble–bubble interactions effect in homogeneous bubbly flow. Phys. Fluids 22, 063302.CrossRefGoogle Scholar
42. Shimada, M., Matsumoto, Y. & Kobayashi, T. 2000 Influence of the nuclei size distribution on the collapsing behavior of the cloud cavitation. JSME Intl J. Ser. B 43, 380385.CrossRefGoogle Scholar
43. van Wijngaarden, L. 1964 On the collective collapse of a large number of gas bubbles in water. In Proc. 11th Cong. Appl. Mech., pp. 854–861.Google Scholar
44. van Wijngaarden, L. 1968 On the equations of motion for mixtures of liquid and gas bubbles. J. Fluid Mech. 33, 465474.CrossRefGoogle Scholar
45. van Wijngaarden, L. 1970 On the structure of shock waves in liquid-bubble mixtures. Appl. Sci. Res. 22, 366381.CrossRefGoogle Scholar
46. van Wijngaarden, L. 1972 One-dimensional flow of liquids containing small gas bubbles. Annu. Rev. Fluid Mech. 4, 369396.CrossRefGoogle Scholar
47. van Wijngaarden, L. 2007 Shock waves in bubbly liquids. In Shock Wave Science and Technology Reference Library. Vol. 1: Multiphase Flows, pp. 333. Springer.CrossRefGoogle Scholar
48. Wang, Y.-C. 1990 Effects of nuclei size distribution on the dynamics of a spherical cloud of cavitation bubbles. J. Fluids Engng 121, 881886.CrossRefGoogle Scholar
49. Wang, Y.-C. & Brennen, C. E. 1994 Shock wave development in the collapse of a cloud of bubbles. In ASME Cavitation and Multiphase Flow Forum, pp. 15–20.Google Scholar
50. Watanabe, M. & Prosperetti, A. 1994 Shock waves in dilute bubbly liquids. J. Fluid Mech. 274, 349381.CrossRefGoogle Scholar
51. Yoon, S. W., Crum, L. A., Prosperetti, A. & Lu, N. Q. 1991 An investigation of the collective oscillations of a bubble cloud. J. Acoust. Soc. Am. 89 (2), 700706.CrossRefGoogle Scholar
52. Zeravcic, Z., Lohse, D. & Van Saarlos, W. 2011 Collective oscillations in bubble clouds. J. Fluid Mech. 680, 114149.CrossRefGoogle Scholar