Hostname: page-component-5cf477f64f-qls9x Total loading time: 0 Render date: 2025-04-05T02:31:20.278Z Has data issue: false hasContentIssue false

Shear-layer perturbation responses from time-resolved schlieren data

Published online by Cambridge University Press:  19 March 2025

Spencer L. Stahl*
Affiliation:
Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, USA
Chandan Kumar
Affiliation:
Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
Datta V. Gaitonde
Affiliation:
Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
*
Corresponding author: Spencer L. Stahl, [email protected]

Abstract

A combination of physics-based and data-driven post-processing techniques is proposed to extract acoustic-related shear-layer perturbation responses directly from spatio-temporally resolved schlieren video. The physics-based component uses momentum potential theory to extract the irrotational (acoustic and thermal) component from density gradients embedded in schlieren pixel intensities. For the unheated shear layer, the method filters acoustic structures and tones not evident in the raw data. The filtered data are then subjected to an efficient data-driven dynamic mode decomposition reduced-order model, which provides the forced acoustic perturbation response for broad parameter ranges. A shear layer comprising Mach 2.461 and 0.175 streams, corresponding to a convective Mach number 0.88 and containing shocks, is adopted for illustration. The overall perturbation response is first obtained using an impulse forcing in the wall-normal direction of the splitter plate, extending into subsonic and supersonic streams. Subsequently, impulse and harmonic forcings are independently applied in a pixel-by-pixel manner for a precise receptivity study. The acoustic response shows a convective wavepacket and acoustic burst from the splitter plate. The interaction with the shock and associated wave dispersion emits a second, slower, acoustic wave. Harmonic forcing indicates higher frequency-dependent sensitivity in the supersonic stream, with the most sensitive location near the outer boundary-layer region, which elicits an order of magnitude larger acoustic response compared with disturbances in the subsonic stream. Some receptive forcing regions do not generate significant acoustic waves, which may guide excitation with low noise impact.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, M.C. & Gaitonde, D.V. 2018 Dynamic linear response of a shock/turbulent-boundary-layer interaction using constrained perturbations. J. Fluid Mech. 840, 291341.CrossRefGoogle Scholar
Adrian, R.J. & Westerweel, J. 2011 Particle Image Velocimetry. Cambridge University Press.Google Scholar
Berkooz, G., Holmes, P. & Lumley, J.L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.CrossRefGoogle Scholar
Berry, M.G., Magstadt, A.S. & Glauser, M.N. 2017 Application of pod on time-resolved schlieren in supersonic multi-stream rectangular jets. Phys. Fluids 29 (2)CrossRefGoogle Scholar
Boree, J. 2003 Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows. Exp. Fluids 35 (2), 188192.CrossRefGoogle Scholar
Browand, F.K. 1966 An experimental investigation of the instability of an incompressible, separated shear layer. J. Fluid Mech. 26 (2), 281307.CrossRefGoogle Scholar
Brown, G.L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64 (4), 775816.CrossRefGoogle Scholar
Doak, P.E. 1989 Momentum potential theory of energy flux carried by momentum fluctuations. J. Sound Vib. 131 (1), 6790.CrossRefGoogle Scholar
Doak, P.E. 1998 Fluctuating total enthalpy as the basic generalized acoustic field. Theor. Comput. Fluid Dyn. 10 (1-4), 115133.CrossRefGoogle Scholar
Doshi, P.S., Gaitonde, D.V., Gist, E.D. & Glauser, M.N. 2022 Passive control of supersonic shear layer in rectangular multistream jet. AIAA J. 60 (10), 56925706.CrossRefGoogle Scholar
Duck, P.W., Lasseigne, D.G. & Hussaini, M.Y. 1995 On the interaction between the shock wave attached to a wedge and freestream disturbances. Theor. Comput. Fluid Dyn. 7 (2), 119139.CrossRefGoogle Scholar
Dutton, C.J., Elliott, G.S. & Kim, K.U. 2019 Compressible Mixing Layer Experiments for cfd Validation. American Institute of Aeronautics and Astronautics, AIAA.CrossRefGoogle Scholar
Elliott, G.S., Samimy, M. & Arnette, S.A. 1995 The characteristics and evolution of large-scale structures in compressible mixing layers. Phys. Fluids 7 (4), 864876.CrossRefGoogle Scholar
Ghasemi, A., Tuna, B.A. & Li, X. 2018 Shear/rotation competition during the roll-up of acoustically excited shear layers. J. Fluid Mech. 844, 831854.CrossRefGoogle Scholar
Hall, J.L., Dimotakis, P.E. & Rosemann, H. 1993 Experiments in nonreacting compressible shear layers. AIAA J. 31 (12), 22472254.CrossRefGoogle Scholar
Helmholtz, H. 1868 XLIII. on discontinuous movements of fluids. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 36 (244), 337346.CrossRefGoogle Scholar
Herbert, T. 1997 Parabolized stability equations. Annu. Rev. Fluid Mech. 29 (1), 245283.CrossRefGoogle Scholar
Hussain, F.A.K. 1986 Coherent structures and turbulence. J. Fluid Mech. 173, 303356.CrossRefGoogle Scholar
Johnson, H., Candler, G. & Alba, C. 2010 Three-dimensional hypersonic boundary layer stability analysis with STABL-3D. In 40th Fluid Dynamics Conference and Exhibit, vol. 1, p. 5005. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Jovanovic, M.R. & Bamieh, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145183.CrossRefGoogle Scholar
Juniper, M.P., Hanifi, A. & Theofilis, V. 2014 Modal stability theory. Appl. Mech. Rev. 66 (2), 024804.CrossRefGoogle Scholar
Karami, S. & Soria, J. 2018 Analysis of coherent structures in an under-expanded supersonic impinging jet using spectral proper orthogonal decomposition (SPOD). Aerosp. 5 (3), 73.CrossRefGoogle Scholar
Kelvin, Lord 1871 Hydrokinetic solutions and observations. Proc. R. Soc. Lond. 7, 63.Google Scholar
Kennedy, R.E., Jewell, J.S. & Laurence, S. J. 2024 Second-mode measurements at high reynolds numbers. AIAA J. 62 (9), 35863590.CrossRefGoogle Scholar
Kim, K.U., Elliott, G.S. & Dutton, J.C. 2020 a Compressibility effects on large structures and entrainment length scales in mixing layers. AIAA J. 58 (12), 51685182.CrossRefGoogle Scholar
Kim, K.U., Elliott, G.S. & Craig Dutton, J. 2020 b Three-dimensional experimental study of compressibility effects on turbulent free shear layers. AIAA J. 58 (1), 133147.CrossRefGoogle Scholar
Lachowicz, J.T., Chokani, N. & Wilkinson, S.P. 1996 Boundary-layer stability measurements in a hypersonic quiet tunnel. AIAA J. 34 (12), 24962500.CrossRefGoogle Scholar
Launder, B.E., Reece, J.G. & Rodi, W. 1975 Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68 (3), 537566.CrossRefGoogle Scholar
Lei, J. & Zhong, X. 2012 Linear stability analysis of nose bluntness effects on hypersonic boundary layer transition. J. Spacecr. Rockets 49 (1), 2437.CrossRefGoogle Scholar
Leib, S.J. 1991 Nonlinear evolution of subsonic and supersonic disturbances on a compressible free shear layer. J. Fluid Mech. 224, 551578.CrossRefGoogle Scholar
Liu, N.-H., Li, X.-R., Hao, P.-F., Zhang, X.-W. & He, F. 2021 Mode switch in tonal under-expanded impinging jets. Phys. Fluids 33 (12), 124102.CrossRefGoogle Scholar
Lu, W., Huang, G., Wang, J. & Hong, S. 2019 Spatio–temporal dynamic mode decomposition in a shear layer flow. Aerosp. Sci. Technol. 91, 263271.CrossRefGoogle Scholar
Lumley, J.L. 1970 Stochastic Tools in Turbulence. Academic.Google Scholar
Mack, Leslie M. 1984 Boundary-layer linear stability theory. Tech. Rep. 709, Part 3. AGARD.Google Scholar
Martens, S., Kinzie, K.W. & McLaughlin, D.K. 1996 Structure of coherent instabilities in a supersonic shear layer. AIAA J. 34 (8), 15551561.CrossRefGoogle Scholar
Martens, S., Kinzie, K.W. & McLaughlin, D.K. 1994 Measurements of Kelvin-Helmholtz instabilities in a supersonic shear layer. AIAA J. 32 (8), 16331639.CrossRefGoogle Scholar
McKeon, B.J. & Sharma, A.S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.CrossRefGoogle Scholar
McLaughlin, D., Martens, S. & Kinzie, K. 1992 An experimental investigation of large scale instabilities in a low reynolds number two-stream supersonic shear layer. In 30th Aerospace Sciences Meeting and Exhibit. AIAA.CrossRefGoogle Scholar
Michalke, A. 1972 The instability of free shear layers. Prog. Aerosp. Sci. 12, 213216.CrossRefGoogle Scholar
Nitsche, M. 2006 Vortex dynamics. In Encyclopedia of Mathematical Physics (ed. Françoise, J.-P., Naber, G.L. & Tsun, T.S), pp. 390399. Academic.CrossRefGoogle Scholar
Oka, Y., Ozawa, Y., Handa, T. & Nonomura, T. 2024 Experimental investigation of control effects of flapping jets on supersonic cavity flow. AIAA J. 62 (3), 928939.CrossRefGoogle Scholar
Padilla-Montero, I., Rodríguez, D., Jaunet, V. & Jordan, P. 2024 Eduction of coherent structures from schlieren images of twin jets using spod informed with momentum potential theory in the spectral domain. Theor. Comput. Fluid Dyn. 38 (3), 127.CrossRefGoogle Scholar
Papamoschou, D. 1995 Evidence of shocklets in a counterflow supersonic shear layer. Phys. Fluids 7 (2), 233235.CrossRefGoogle Scholar
Papamoschou, D. & Roshko, A. 1988 a The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453477.CrossRefGoogle Scholar
Papamoschou, D. & Roshko, A. 1988 b Observations of supersonic free shear layers. Sadhana 12 (1-2), 114.CrossRefGoogle Scholar
Paquin, L.A., Skinner, S.N. & Laurence, S.J. 2023 Hypersonic boundary-layer disturbances on a cooled, slender cone at Mach 6. J. Spacecr. Rockets 60 (2), 533544.CrossRefGoogle Scholar
Paredes, P. 2014 Advances in global instability computations: from incompressible to hypersonic flow. PhD thesis, Universidad Politécnica e Madrid.Google Scholar
Prasad, C. & Gaitonde, D.V. 2022 A robust physics-based method to filter coherent wavepackets from high-speed schlieren images. J. Fluid Mech. 940, R1.CrossRefGoogle Scholar
Prasad, C., Gaitonde, D.V., Esfahani, A., Webb, N.J. & Samimy, M. 2022 Examination of wavepackets in forced and unforced rectangular twin jets with high-speed schlieren. In AIAA SCITECH. 2022 Forum, AIAA Paper 2022-2402 CrossRefGoogle Scholar
Prasad, C. & Morris, P.J. 2020 A study of noise reduction mechanisms of jets with fluid inserts. J. Sound Vib. 476, 115331.CrossRefGoogle Scholar
Prasad, C. & Morris, P.J. 2021 Steady active control of noise radiation from highly heated supersonic jets. J. Acoust. Soc. Am. 149 (2), 13061317.CrossRefGoogle ScholarPubMed
Ranjan, R., Unnikrishnan, S. & Gaitonde, D.V. 2020 A robust approach for stability analysis of complex flows using high-order navier-stokes solvers. J. Comput. Phys. 403, 109076.CrossRefGoogle Scholar
Ray, T.P. 1982 The effects of a simple shear layer on the growth of kelvin–helmholtz instabilities. Mon. Not. R. Astron. Soc. 198 (3), 617625.CrossRefGoogle Scholar
Rogers, M.M. & Moser, R.D. 1994 Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids 6 (2), 903923.CrossRefGoogle Scholar
Samimy, M., Webb, N. & Crawley, M. 2018 Excitation of free shear-layer instabilities for high-speed flow control. AIAA J. 56 (5), 17701791.CrossRefGoogle Scholar
Sandham, N.D. & Sandberg, R.D. 2010 Development of brown–roshko structures in the mixing layer behind a splitter plate. In Direct and Large-Eddy Simulation VII (ed. Armenio, V., Geurts, B. & Fröhlich, J.), pp. 4954. Springer.CrossRefGoogle Scholar
Schmid, P.J. 2007 a Nonmodal stability theory. Ann. Rev. Fluid Mech 39 (1), 129162.CrossRefGoogle Scholar
Schmid, P.J. & Henningson, D.S. 2001 Stability and Transition in Shear Flows. Springer.CrossRefGoogle Scholar
Schmid, P.J. 2007 b Nonmodal stability theory. Annu. Rev. Fluid Mech. 39 (1), 129162.CrossRefGoogle Scholar
Schmid, P.J., Li, L., Juniper, M.P. & Pust, O. 2011 Applications of the dynamic mode decomposition. Theor. Comput. Fluid Dyn. 25 (1-4), 249259.CrossRefGoogle Scholar
Schmidt, O.T. & Schmid, P.J. 2019 A conditional space-time POD formalism for intermittent and rare events: example of acoustic bursts in turbulent jets. J. Fluid Mech. 867, 112.CrossRefGoogle Scholar
Schmidt, O.T. 2020 Guide to spectral proper orthogonal decomposition. AIAA J. 58 (3), 10231033.CrossRefGoogle Scholar
Settles, G.S. & Hargather, M.J. 2017 A review of recent developments in schlieren and shadowgraph techniques. Meas. Sci. Technol. 28 (4), 042001.CrossRefGoogle Scholar
Sinha, A., Alkandry, H., Kearney-Fischer, M., Samimy, M. & Colonius, T. 2012 The impulse response of a high-speed jet forced with localized arc filament plasma actuators. Phys. Fluids 24 (12), 125104.CrossRefGoogle Scholar
Sinha, A., Gudmundsson, K., Xia, H. & Colonius, T. 2016 Parabolized stability analysis of jets from serrated nozzles. J. Fluid Mech. 789, 3663.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Part I: coherent structures. Part II: symmetries and transformations. Part III: dynamics and scaling. Q. Appl. Maths 45 (3), 561590.CrossRefGoogle Scholar
Stack, C.M., Adler, M.C. & Gaitonde, D.V. 2019 Influence of the Splitter Plate Thickness On the Near-Wake Dynamics of Compressible Turbulent Mixing Layers. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Stahl, S.L. & Gaitonde, D.V. 2021 Analysis of fountain-flow coupling between twin sonic impinging jets. In AIAA AVIATION 2021 FORUM, pp. 119.Google Scholar
Stahl, S.L. & Gaitonde, D.V. 2024 A data-driven approach to guide supersonic impinging jet control. J. Fluid Mech. 978, R2.CrossRefGoogle Scholar
Stahl, S.L., Prasad, C., Goparaju, H. & Gaitonde, D.V. 2023 Conditional space-time POD extensions for stability and prediction analysis. J. Comput. Phys. 492, 112433.CrossRefGoogle Scholar
Stahl, S.L., Schwartz, M.J., Benton, S.I. & Gaitonde, D.V. 2024 Receptivity analysis of turbulent separated flow over a rearward-facing smooth ramp. AIAA Aviation Forum and ASCEND 2024.CrossRefGoogle Scholar
Stetson, K.F. 1988 On nonlinear aspects of hypersonic boundary-layer stability. AIAA J. 26 (7), 883885.CrossRefGoogle Scholar
Taira, K., Yeh, C.-A. & Munday, P.M. 2017 Turbulent flow modification with thermoacoustic waves for separation control. RPPR Final Report. Florida State University.Google Scholar
Theofilis, V. 2011 Global linear instability. Ann. Rev. Fluid Mech. 43 (1), 319352.CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar
Trefethen, L.N. 1999 Spectra and Pseudospectra, pp. 217250. Springer.Google Scholar
Unnikrishnan, S. & Gaitonde, D.V. 2016 Acoustic, hydrodynamic and thermal modes in a supersonic cold jet. J. Fluid Mech. 800, 387432.CrossRefGoogle Scholar
Unnikrishnan, S. & Gaitonde, D.V. 2018 Transfer mechanisms from stochastic turbulence to organized acoustic radiation in a supersonic jet. Eur. J. Mech. ( B/ Fluids) 72, 3856.CrossRefGoogle Scholar
Unnikrishnan, S. & Gaitonde, D.V. 2019 Interactions between vortical, acoustic and thermal components during hypersonic transition. J. Fluid Mech. 868, 611647.CrossRefGoogle Scholar
Unnikrishnan, S. & Gaitonde, D.V. 2021 Instabilities and transition in cooled wall hypersonic boundary layers. J. Fluid Mech. 915, A26.CrossRefGoogle Scholar
Weightman, J.L., Amili, O., Honnery, D., Soria, J. & Edgington-Mitchell, D. 2017 An explanation for the phase lag in supersonic jet impingement. J. Fluid Mech. 815, R1.CrossRefGoogle Scholar
Weightman, J.L., Amili, O., Honnery, D., Soria, J. & Edgington-Mitchell, D. 2018 Signatures of shear layer unsteadiness in proper orthogonal decomposition. Exp. Fluids 59 (12), 180.CrossRefGoogle Scholar
Willert, C.E. & Gharib, M. 1991 Digital particle image velocimetry. Exp. Fluids 10 (4), 181193.CrossRefGoogle Scholar