Hostname: page-component-599cfd5f84-9hh9z Total loading time: 0 Render date: 2025-01-07T08:03:44.006Z Has data issue: false hasContentIssue false

Shear localization and wall friction in confined dense granular flows

Published online by Cambridge University Press:  20 June 2018

Riccardo Artoni*
Affiliation:
IFSTTAR, MAST, GPEM, F-44340 Bouguenais, France
Alberto Soligo
Affiliation:
IFSTTAR, MAST, GPEM, F-44340 Bouguenais, France
Jean-Marc Paul
Affiliation:
IFSTTAR, MAST, GPEM, F-44340 Bouguenais, France
Patrick Richard
Affiliation:
IFSTTAR, MAST, GPEM, F-44340 Bouguenais, France
*
Email address for correspondence: [email protected]

Abstract

In this work, we discuss experiments and discrete element simulations of wall-bounded shear flows of slightly polydisperse spheres under gravity. Experiments were performed in an annular shear cell in which the bottom bumpy wall rotates at fixed velocity, while a pressure is applied at the top bumpy wall. The coaxial cylinders delimiting the flow are flat, frictional and transparent, allowing visualization of the flow. Velocity profiles were obtained by particle image velocimetry, and are characterized by an exponential profile, the decay length of which depends on the applied load, but not on the wall velocity. A force sensor was installed at different vertical positions on the outer sidewall in order to measure wall forces. The effective streamwise and transverse wall friction coefficients were thus estimated, showing wall friction weakening in creep zones. In order to better understand these results, contact dynamics simulations were carried out in a simplified configuration (Artoni & Richard, Phys. Rev. Lett., vol. 115 (15), 2015, 158001). In this case, profiting from the possibility of varying the particle–wall friction coefficient, different flow regimes were observed. In particular, shear can either be localized (1) at the bottom or (2) at the top of the shear cell, or (3) it can be quite evenly distributed in the vertical direction. Through an averaging technique that explicitly takes into account gradient effects (Artoni & Richard, Phys. Rev. E, vol. 91 (3), 2015, 032202), relevant, coarse-grained, continuum fields (solid fraction, velocity, stresses, velocity fluctuations) were obtained. They allow a discussion of the relevance of velocity fluctuations (i.e. granular temperature) for describing non-locality in granular flow. The case of solid-like fluctuations is also addressed. Finally, a simplified stress analysis is devoted to explain the emergence of complex shear localization patterns by the heterogeneity of effective bulk friction, which is due to the joint effect of gravity and wall friction.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ananda, K. S., Moka, S. & Nott, P. R. 2008 Kinematics and statistics of dense, slow granular flow through vertical channels. J. Fluid Mech. 610, 6997.Google Scholar
Artoni, R. & Richard, P. 2015a Average balance equations, scale dependence, and energy cascade for granular materials. Phys. Rev. E 91, 032202.Google Scholar
Artoni, R. & Richard, P. 2015b Effective wall friction in wall-bounded 3D dense granular flows. Phys. Rev. Lett. 115, 158001.Google Scholar
Artoni, R. & Richard, P. 2018 Torsional shear flow of granular materials: shear localization and minimum energy principle. Comput. Part. Mech. 5 (1), 312.Google Scholar
Artoni, R., Santomaso, A. & Canu, P. 2007 Shear bands in granular flow through a mixing-length model. Europhys. Lett. 80 (3), 34004.Google Scholar
Artoni, R., Santomaso, A. & Canu, P. 2009 Effective boundary conditions for dense granular flows. Phys. Rev. E 79 (3), 031304.Google Scholar
Artoni, R., Santomaso, A. C., Go, M. & Canu, P. 2012 Scaling laws for the slip velocity in dense granular flows. Phys. Rev. Lett. 108, 238002.Google Scholar
Babic, M. 1997 Average balance equations for granular materials. Intl J. Engng Sci. 35 (5), 523548.Google Scholar
Ben Aïm, R. & le Goff, P. 1968 La coordinance des empilements désordonnés de sphères. Application aux mélanges binaires de sphères. Powder Technol. 2 (1), 112.Google Scholar
Boltenhagen, P. 1999 Boundary effects on the maximal angle of stability of a granular packing. Eur. Phys. J. B 12, 7578.Google Scholar
Bouzid, M., Trulsson, M., Claudin, P., Clément, E. & Andreotti, B. 2013 Nonlocal rheology of granular flows across yield conditions. Phys. Rev. Lett. 111, 238301.Google Scholar
Bouzid, M., Trulsson, M., Claudin, P., Clément, E. & Andreotti, B. 2015 Microrheology to probe non-local effects in dense granular flows. Europhys. Lett. 109 (2), 24002.Google Scholar
Brodu, N., Delannay, R., Valance, A. & Richard, P. 2015 New patterns in high-speed granular flows. J. Fluid Mech. 769, 218228.Google Scholar
Brodu, N., Richard, P. & Delannay, R. 2013 Shallow granular flows down flat frictional channels: steady flows and longitudinal vortices. Phys. Rev. E 87, 022202.Google Scholar
Camenen, J.-F., Descantes, Y. & Richard, P. 2012 Effect of confinement on dense packings of rigid frictionless spheres and polyhedra. Phys. Rev. E 86, 061317.Google Scholar
Courrech du Pont, S., Gondret, P., Perrin, B. & Rabaud, M. 2003 Wall effects on granular heap stability. Europhys. Lett. 61 (4), 492.Google Scholar
Crassous, J., Metayer, J.-F., Richard, P. & Laroche, C. 2008 Experimental study of a creeping granular flow at very low velocity. J. Stat. Mech. Theor. Exp. 2008 (03), P03009.Google Scholar
Daniels, K. E. 2017 The role of force networks in granular materials. Eur. Phys. J. Web Conf. 140, 01006.Google Scholar
Daniels, K. E., Kollmer, J. E. & Puckett, J. G. 2017 Photoelastic force measurements in granular materials. Rev. Sci. Instrum. 88 (5), 051808.Google Scholar
Darve, F., Sibille, L., Daouadji, A. & Nicot, F. 2007 Bifurcations in granular media: macro- and micro-mechanics approaches. C. R. Méc 335 (9), 496515.Google Scholar
Desrues, J., Chambon, R., Mokni, M. & Mazerolle, F. 1996 Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Gèotechnique 46 (3), 529546.Google Scholar
Dippel, S. & Wolf, D. E. 1999 Molecular dynamics simulations of granular chute flow. Comput. Phys. Commun. 121–122, 284289; Proceedings of the Europhysics Conference on Computational Physics CCP 1998.Google Scholar
GDR-MiDi 2004 On dense granular flows. Eur. Phys. J. E 14 (4), 341365.Google Scholar
Golick, L. A. & Daniels, K. E. 2009 Mixing and segregation rates in sheared granular materials. Phys. Rev. E 80, 042301.Google Scholar
Jean, M. 1999 The non-smooth contact dynamics method. Comput. Meth. Appl. Mech. Engng 177 (3–4), 235257.Google Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2005 Crucial role of side walls for granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167192.Google Scholar
Kamrin, K. & Henann, D. L. 2015 Nonlocal modeling of granular flows down inclines. Soft Matt. 11, 179185.Google Scholar
Kamrin, K. & Koval, G. 2012 Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108, 178301.Google Scholar
Krishnaraj, K. P. & Nott, P. R. 2016 A dilation-driven vortex flow in sheared granular materials explains a rheometric anomaly. Nat. Commun. 7, 10630.Google Scholar
Kuwano, O., Ando, R. & Hatano, T. 2013 Crossover from negative to positive shear rate dependence in granular friction. Geophys. Res. Lett. 40 (7), 12951299.Google Scholar
Majmudar, T. S. & Behringer, R. P. 2005 Contact force measurements and stress-induced anisotropy in granular materials. Nature 435 (7045), 10791082.Google Scholar
Métayer, J.-F., Richard, P., Faisant, A. & Delannay, R. 2010 Electrically induced tunable cohesion in granular systems. J. Stat. Mech. 2010 (08), P08003.Google Scholar
Moosavi, R., Shaebani, M. R., Maleki, M., Török, J., Wolf, D. E. & Losert, W. 2013 Coexistence and transition between shear zones in slow granular flows. Phys. Rev. Lett. 111, 148301.Google Scholar
Moreau, J. J. 1988 Unilateral contact and dry friction in finite freedom dynamics. In Nonsmooth Mechanics and Applications (ed. Moreau, J. J. & Panagiotopoulos, P. D.), International Centre for Mechanical Studies, vol. 302, pp. 182. Springer.Google Scholar
Mueth, D., Debregeas, G., Karczmar, G., Eng, P., Nagel, S. & Jaeger, H. 2000 Signatures of granular microstructure in dense shear flows. Nature 406, 385388.Google Scholar
Nedderman, R. M. & Laohakul, C. 1980 The thickness of the shear zone of flowing granular materials. Powder Technol. 25 (1), 91100.Google Scholar
Nott, P. R. 2017 A non-local plasticity theory for slow granular flows. Eur. Phys. J. Web Conf. 140, 11015.Google Scholar
Orlando, A. D. & Shen, H. H. 2012 Effect of particle size and boundary conditions on the shear stress in an annular shear cell. Granul. Matt. 14 (3), 423431.Google Scholar
Orlando, A. D. & Shen, H. H. 2013 Using the annular shear cell as a rheometer for rapidly sheared granular materials: a DEM study. Granul. Matt. 15 (2), 183194.Google Scholar
Owens, E. T. & Daniels, K. E. 2011 Sound propagation and force chains in granular materials. Europhys. Lett. 94 (5), 54005.Google Scholar
Owens, E. T. & Daniels, K. E. 2013 Acoustic measurement of a granular density of modes. Soft Matt. 9, 12141219.Google Scholar
Pouliquen, O., Cassar, C., Forterre, Y., Jop, P. & Nicolas, M. 2006 How do grains flow: towards a simple rheology for dense granular flows. In Proceedings of Powders and Grains 2005. A. A. Balkema.Google Scholar
Radjai, F., Jean, M., Moreau, J.-J. & Roux, S. 1996 Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 77, 274277.Google Scholar
Renouf, M., Dubois, F. & Alart, P. 2004 A parallel version of the non smooth contact dynamics algorithm applied to the simulation of granular media. J. Comput. Appl. Maths 168 (1–2), 375382; Selected Papers from the Second International Conference on Advanced Computational Methods in Engineering (ACOMEN 2002).Google Scholar
Richard, P., Valance, A., Métayer, J.-F., Sanchez, P., Crassous, J., Louge, M. & Delannay, R. 2008 Rheology of confined granular flows: scale invariance, glass transition, and friction weakening. Phys. Rev. Lett. 101 (24), 248002.Google Scholar
de Richter, S. K., Zaitsev, V. Y., Richard, P., Delannay, R., Car, G. L. & Tournat, V. 2010 Experimental evidence of ageing and slow restoration of the weak-contact configuration in tilted 3D granular packings. J. Stat. Mech. 2010 (11), P11023.Google Scholar
Savage, S. B. & Sayed, M. 1984 Stresses developed by dry cohesionless granular materials sheared in an annular shear cell. J. Fluid Mech. 142, 391430.Google Scholar
Taberlet, N., Richard, P., Henry, E. & Delannay, R. 2004 The growth of a super stable heap: an experimental and numerical study. Europhys. Lett. 68 (4), 515521.Google Scholar
Taberlet, N., Richard, P., Valance, A., Losert, W., Pasini, J. M., Jenkins, J. T. & Delannay, R. 2003 Superstable granular heap in a thin channel. Phys. Rev. Lett. 91 (26), 264301.Google Scholar
Tunuguntla, D. R., Thornton, A. R. & Weinhart, T. 2016 From discrete elements to continuum fields: extension to bidisperse systems. Comput. Part. Mech. 3 (3), 349365.Google Scholar
Unger, T. 2007 Refraction of shear zones in granular materials. Phys. Rev. Lett. 98, 018301.Google Scholar
Verman, L. C. & Banerjee, S. 1946 Effect of container walls on packing density of particles. Nature 157, 589.Google Scholar
Weinhart, T., Hartkamp, R., Thornton, A. R. & Luding, S. 2013 Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface. Phys. Fluids 25 (7), 070605.Google Scholar
Weinhart, T., Thornton, A. R., Luding, S. & Bokhove, O. 2012 From discrete particles to continuum fields near a boundary. Granul. Matt. 14 (2), 289294.Google Scholar
Wildman, R. D., Martin, T. W., Huntley, J. M., Jenkins, J. T., Viswanathan, H., Fen, X. & Parker, D. J. 2008 Experimental investigation and kinetic-theory-based model of a rapid granular shear flow. J. Fluid Mech. 602, 6379.Google Scholar
Yang, F.-L. & Huang, Y.-T. 2016 New aspects for friction coefficients of finite granular avalanche down a flat narrow reservoir. Granul. Matt. 18 (4), 77.Google Scholar
Zaitsev, V. Yu., Richard, P., Delannay, R., Tournat, V. & Gusev, V. E. 2008 Pre-avalanche structural rearrangements in the bulk of granular medium: experimental evidence. Europhys. Lett. 83 (6), 64003.Google Scholar
Zhang, Q. & Kamrin, K. 2017 Microscopic description of the granular fluidity field in nonlocal flow modeling. Phys. Rev. Lett. 118, 058001.Google Scholar