Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T16:43:36.421Z Has data issue: false hasContentIssue false

Shear flow of periodic arrays of particle clusters: a boundary-element method

Published online by Cambridge University Press:  26 April 2006

N. Phan-Thien
Affiliation:
Department of Mechanical Engineering, The University of Sydney, NSW 2006, Australia
T. Tran-Cong
Affiliation:
Department of Mechanical Engineering, University College of Southern Queensland, Toowoomba, Queensland 4350, Australia
A. L. Graham
Affiliation:
Division of Mechanical and Electronic Engineering, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Abstract

The boundary-element method is used to solve Stokes equations for periodic arrays of force-free and torque-free rigid particles. Simple cubic arrays of spheres, spheroids, cubes, and clusters of spheres are subjected to a bulk simple shearing flow. The effective volume-averaged stress tensor for the suspension and the detailed velocity and stress fields throughout the Newtonian suspending fluid are calculated. We find that even crude meshes give very good volume-averaged results, but fine meshes are required to track local minima and maxima in the stress field. For simple cubic arrays of spheres, the boundary-element results are in excellent agreement with the analytical viscosity predictions of Nunan & Keller (1984). Even at the highest concentration of solids studied, no significant normal stress differences were observed, in agreement with Nunan & Keller's results (1984). Up to moderate concentrations of particles, the volume-averaged properties of the suspension display only a weak dependence on the particle geometry. Suspensions of spheroids and cubes behave approximately as suspensions of spheres on the average despite large differences in the local micromechanics of stress and velocity fields. Simple cubic arrays of clusters of spheres tend to behave on a macroscopic level as a cubic array of spheres whose effective volume fraction is about 150% of the total volume fraction of the spheres in the clusters.

Type
Research Article
Copyright
© 1991 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, P. M., Zuzovsky, M. & Brenner, H. 1985 Intl J. Multiphase Flow 11, 387.
Banerjee, P. K. & Butterfield, R. 1981 Boundary Element Methods in Engineering Sciences. McGraw-Hill.
Batchelor, G. K. 1970 J. Fluid Mech. 41, 545.
Batchelor, G. K. 1976 J. Fluid Mech. 74, 1.
Batchelor, G. K. 1982 J. Fluid Mech. 119, 379.
Beenakker, C. W. J. 1984 Physica 128, 48.
Bloomfield, V., Dalton, W. O. & Holde, K. E. van 1967 Biopolymers 5, 135.
Brady, J. F. & Bossis, G. 1988 Ann. Rev. Fluid Mech. 20, 111.
Brady, J. F., Phillips, R. J., Lester, J. C. & Bossis, G. 1988 J. Fluid Mech. 195, 257.
Brebbia, C. A., Telles, J. F. C. & Wrobel, L. C. 1984 Boundary Element Techniques. Springer.
Brenner, H. 1963 Chem. Engng Sci. 18, 1.
Brenner, H. 1964a Chem. Engng Sci. 19, 599.
Brenner, H. 1964b Chem. Engng Sci. 19, 631.
Brenner, H. 1964c Chem. Engng Sci. 19, 703.
Brenner, H., Nadim, N. & Haber, S. 1987 J. Fluid Mech. 183, 511.
Brenner, H. & O'Neill, M. E. 1972 Chem. Engng Sci. 27, 1421.
Bush, M. B. & Phan-Thien, N. 1984 J. Non-Newt. Fluid Mech. 16, 303.
Durlofsky, L., Brady, J. F. & Bossis, G. 1987 J. Fluid Mech. 180, 21.
Ganatos, P., Pfeffer, R. & Weinbaum, S. 1978 J. Fluid Mech. 84, 79.
Gluckman, M. J., Pfeffer, R. & Weinbaum, S. 1971 J. Fluid Mech. 50, 705.
Gluckman, M. J., Weinbaum, S. & Pfeffer, R. 1972 J. Fluid Mech. 55, 677.
Graham, A. L., Steele, R. D. & Bird, R. B. 1984 Indust. Engng Chem. Fund. 23, 421.
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics. Noordhoff.
Hasimoto, H. 1959 J. Fluid Mech. 5, 317.
Herczyáski, R. & Pieńkowska, I. 1980 Ann. Rev. Fluid Mech. 12, 237.
Ingber, M. S., Mondy, L. A. & Graham, A. L. 1989 61st Ann. Meeting Soc. Rheol. Montreal, Canada.
Jeffrey, G. G. 1922 Proc. R. Soc. Lond. A 102, 161
Jeffrey, D. J. & Acrivos, A 1976 AIChE J. 22, 417.
Jeffrey, D. J. & Onishi, Y. 1984 J. Fluid Mech. 139, 261.
Karrila, S. J. & Kim, S. 1990 Rheology Research Center Report RRC 123, University of Wisconsin, Madison.
Kim, S. 1987 Phys. Fluids 30, 2309.
Kim, S., Fuentes, Y. O. & Karrila, S. J. 1990 Stat. Phys. in press.
Kim, S. & Mifflin, R. T. 1985 Phys. Fluids 28, 2033.
Kirkwood, J. G. & Riseman, J. 1948 J. Chem. Phys. 16, 565.
Kynch, G. J. 1959 J. Fluid Mech. 5, 193.
Leichtberg, S., Pfeffer, P. & Weinbaum, S. 1976a Intl J. Multiphase Flow 3, 147.
Leichtberg, S., Weinbaum, S., Pfeffer, P. & Gluckman, M. J. 1976b Phil. Trans. R. Soc. A 282, 585
Lewis, T. B. & Nielsen, L. E. 1968 Trans. Soc. Rheol. 12, 421.
Mccammon, J. A. & Deutch, J. M. 1976 Biopolymers 15, 1397.
Mazur, P. & Saarloos, W. van 1982 Physica 115, 21.
Metzner, A. B. 1985 J. Rheol. 29, 739.
Mondy, L. A., Graham, A. L., Stroeve, P. & Majumdar, A. 1987 AIChE J. 33, 862.
Nunan, K. C. & Keller, J. B. 1984 J. Fluid Mech. 142, 269.
Phan-Thien, N., Tran-Cong, T. & Ramia, M. 1987 J. Fluid Mech. 184, 533.
Roger, R. P. & Hussey, R. G. 1982 Phys. Fluids 25, 915.
Roscoe, R. 1952 Brit. J. Appl. Phys. 3, 267.
Saffman, P. G. 1973 Stud. Appl. Maths 52, 115.
Swanson, E., Teller, D. C. & Haën, C. de 1978 J. Chem. Phys. 68, 5097.
Tran-Cong, T. & Phan-Thien, N. 1988a Rheol. Acta 27, 21.
Tran-Cong, T. & Phan-Thien, N. 1988b Rheol. Acta 27, 301.
Tran-Cong, T. & Phan-Thien, N. 1988c J. Non-Newt. Fluid Mech. 30, 37.
Tran-Cong, T. & Phan-Thien, N. 1989 Phys. Fluids A 1, 453
Tran-Cong, T., Phan-Thien, N. & Graham, A. L. 1990 Phys. Fluids A 2, 666.
Vand, V. 1948 J. Phys. Colloid Chem. 52, 277.
Youngren, G. K. & Acrivos, A. 1975 J. Fluid Mech. 69, 377.
Zick, A. A. & Homsy, G. M. 1982 J. Fluid Mech. 115, 13.
Zuzovsky, M. 1976 Transport processes in spatially periodic suspensions. PhD thesis, Carnegie–Mellon University [76–30188].
Zuzovsky, M., Adler, P. M. & Brenner, H. 1983 Phys. Fluids 26, 1714.