Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T17:11:34.598Z Has data issue: false hasContentIssue false

Shear dispersion looked at from a new angle

Published online by Cambridge University Press:  21 April 2006

Ronald Smith
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, UK

Abstract

It is shown that for a sudden uniform discharge at x = 0, t = 0 in a bounded shear flow, the asymptotic concentration distribution at moderately large times can be well approximated by the tilted Gaussian \[ c=\frac{\overline{q}}{(2\pi\langle\sigma^2\rangle)^{\frac{1}{2}}}\exp\left(-\frac{(x-\overline{u}t-g_0(y,z)+2\alpha D)^2}{2\langle \sigma^2\rangle }\right), \] with \begin{eqnarray*} & \langle \sigma^2\rangle = 2Dt + 2\alpha D(x-\overline{u}t)-3\overline{g^2_0}-4\alpha^2 D^2,\\ & \overline{g_0} = 0,\quad D = \overline{ug_0},\quad \alpha = \frac{(\overline{u-\overline{u}})g^2_0}{2D^2}. \end{eqnarray*} Here u(y, z) is the velocity profile, g0(y, z) the centroid displacement function, and the overbars denote cross-sectional averaging. The tilt parameter α makes the concentration distribution suitably skew. The effectiveness of this simple formula is demonstrated for two-layer flows and for plane Poiseuille flow.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.
Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A235, 6777.Google Scholar
Barton, N. G. 1983 The method of moments for solute dispersion. J. Fluid Mech. 136, 243267.Google Scholar
Chatwin, P. C. 1970 The approach to normality of the concentration distribution of a solute in solvent flowing along a straight pipe. J. Fluid Mech. 43, 321352.Google Scholar
Chatwin, P. C. 1980 Presentation of longitudinal dispersion data. J. Hydraul. Div. ASCE 106, 7183.Google Scholar
Chickwendu, S. C. & Ojiakor, G. U. 1985 Slow-zone model for longitudinal dispersion in two-dimensional shear flows. J. Fluid Mech. 152, 1538.Google Scholar
Gill, W. N. & Sankarasubramanian, R. 1970 Exact analysis of unsteady convective diffusion. Proc. R. Soc. Lond. A 327, 191208.Google Scholar
Krishnamurthy, S. & Subramanian, R. S. 1977 Exact analysis of field-flow fractionation. Sep. Sci. Tech. 12, 347379.Google Scholar
Jayaraj, K. & Subramanian, R. S. 1978 On relaxation phenomena in field-flow fractionation. Sep. Sci. Tech. 13, 791817.Google Scholar
Nadim, A., Pagitsas, M. & Brenner, H. 1986 Higher-order moments in macrotransport processes. J. Chem. Phys. 85, 52385245.Google Scholar
Smith, R. 1981 A delay-diffusion description for contaminant dispersion J. Fluid Mech. 105, 469486.Google Scholar
Smith, R. 1984 Temporal moments at large distances downstream of contaminant releases in rivers. J. Fluid Mech. 140, 153174.Google Scholar
Taylor, G. I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219, 186203.Google Scholar
Thacker, W. C. 1976 A solvable model of shear dispersion. J. Phys. Oceanogr. 6, 6675.Google Scholar
Tsai, Y. H. & Holley, E. R. 1978 Temporal moments for longitudinal dispersion. J. Hydraul. Div. ASCE 104, 16171634.Google Scholar
Tsai, Y. H. & Holley, E. R. 1980 Temporal moments for longitudinal dispersion. J. Hydraul. Div. ASCE 106, 20632066.Google Scholar