Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-18T22:48:55.505Z Has data issue: false hasContentIssue false

Shallow-water approach to the circular hydraulic jump

Published online by Cambridge University Press:  26 April 2006

Tomas Bohr
Affiliation:
The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
Peter Dimon
Affiliation:
The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
Vakhtang Putkaradze
Affiliation:
The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark Moscow Physico-Technical Institute, Institutsky per. 9, 141700 Moscow (Dolgoprudny), Russia

Abstract

We show that the circular hydraulic jump can be qualitatively understood using simplified equations of the shallow-water type which include viscosity. We find that the outer solutions become singular at a finite radius and that this lack of asymptotic states is a general phenomenon associated with radial flow with a free surface. By connecting inner and outer solutions through a shock, we obtain a scaling relation for the radius Rj of the jump, RjQvg, where Q is the volume flux, v is the kinematic viscosity and g is the gravitational acceleration. This scaling relation is valid asymptotically for large Q. We discuss the corrections appearing at smaller Q and compare with experiments.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellmann, R. 1970 Methods of Nonlinear Analysis, vol. 1. Academic.
Bowles, R. I. & Smith, F. T. 1992 J. Fluid Mech. 242, 145.
Courant, R. & Friedichs, K. O. 1948 Supersonic Flows and Shock Waves. Interscience.
Craik, A. D. D., Latham, R. C., Fawkes, M. J. & Gribbon, P. W. F. 1981 J. Fluid Mech. 112, 347.
Dimon, P., Ellegaard, C., Hansen, R. H., Hørlück, S. & Zauner, D. 1992.
Hardy, G. H. 1912 Proc. Lond. Math. Soc. 10, 451.
Ishigai, S., Nakanishi, S., Mizuno, M. & Imamura, T. 1977 Bull. JSME 20, 85.
Khalifa, A. A. M. & Mccorquodale, J. A. 1992 J. Hydraul. Res. 30, 149.
Kurihara, M. 1946 Rep. Research Institute for Fluid Engng, Kyusyu Imperial University, vol. 3, p. 11.
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Pergamon.
Nakoryakov, V. E., Pokusaev, B. G. & Troyan, E. N. 1978 Intl J. Heat Mass Transfer 21, 1175.
Olsson, R. G. & Turkdogan, E. T. 1966 Nature 211, 813.
Pumir, A., Manneville, P. & Pomeau, Y. 1983 J. Fluid Mech. 135, 27.
Putkaradze, V. P. & Rugh, H. H. 1992 Proc. R. Soc. Lond. A (to appear.)
Rayleigh, Lord 1914 Proc. R. Soc. Lond. A 90, 324.
Schlichting, H. 1968 Boundary Layer Theory. McGraw-Hill.
Tani, I. 1949 J. Phys. Soc. Japan 4, 212.
Watson, E. J. 1964 J. Fluid Mech. 20, 481.
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley-Interscience.