Published online by Cambridge University Press: 10 September 2009
The flow of a partial-depth lock-exchange gravity current past an isolated bottom-mounted obstacle is studied by means of two-dimensional direct numerical simulations and steady shallow-water theory. The simulations indicate that the flux of the current downstream of the obstacle is approximately constant in space and time. This information is employed to extend the shallow-water models of Rottman et al. (J. Hazard. Mater., vol. 11, 1985, pp. 325–340) and Lane-Serff, Beal & Hadfield (J. Fluid Mech., vol. 292, 1995, pp. 39–53), in order to predict the height and front speed of the downstream current as functions of the upstream Froude number and the ratio of obstacle to current height. The model predictions are found to agree closely with the simulation results. In addition, the shallow-water model provides an estimate for the maximum drag that lies within 10% of the simulation results for obstacles much larger than the boundary-layer thickness.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.