Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-17T19:45:59.502Z Has data issue: false hasContentIssue false

Sensitivity analysis of large-eddy simulations to subgrid-scale-model parametric uncertainty using polynomial chaos

Published online by Cambridge University Press:  07 August 2007

DIDIER LUCOR
Affiliation:
D'Alembert Institute, Université Pierre et Marie Curie – Paris 6 Boîte 162, 4 place Jussieu, 75252 Paris cedex 05, [email protected]; [email protected], [email protected]; [email protected]
JOHAN MEYERS
Affiliation:
D'Alembert Institute, Université Pierre et Marie Curie – Paris 6 Boîte 162, 4 place Jussieu, 75252 Paris cedex 05, [email protected]; [email protected], [email protected]; [email protected] Department of Mechanical Engineering, Katholieke Universiteit Leuven Celestijnenlaan 300A, B3001 Leuven, Belgium
PIERRE SAGAUT
Affiliation:
D'Alembert Institute, Université Pierre et Marie Curie – Paris 6 Boîte 162, 4 place Jussieu, 75252 Paris cedex 05, [email protected]; [email protected], [email protected]; [email protected]

Abstract

We address the sensitivity of large-eddy simulations (LES) to parametric uncertainty in the subgrid-scale model. More specifically, we investigate the sensitivity of the LES statistical moments of decaying homogeneous isotropic turbulence to the uncertainty in the Smagorinsky model free parameter Cs (i.e. the Smagorinsky constant). Our sensitivity methodology relies on the non-intrusive approach of the generalized Polynomial Chaos (gPC) method; the gPC is a spectral non-statistical numerical method well-suited to representing random processes not restricted to Gaussian fields. The analysis is carried out at Reλ, =, 100 and for different grid resolutions and Cs distributions. Numerical predictions are also compared to direct numerical simulation evidence. We have shown that the different turbulent scales of the LES solution respond differently to the variability in Cs. In particular, the study of the relative turbulent kinetic energy distributions for different Cs distributions indicates that small scales are mainly affected by changes in the subgrid-model parametric uncertainty.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Askey, R. & Wilson, J. 1985 Some basic hypergeometric polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc., AMS, Providence RI, vol. 319Google Scholar
Asokan, B. V. & Zabaras, N. 2005 a Using stochastic analysis to capture unstable equilibrium in natural convection. J. Comput. Phys. 208, 134153.CrossRefGoogle Scholar
Asokan, B. V. & Zabaras, N. 2005 b Variational multiscale stabilized fem formulations for transport equations: stochastic advection-diffusion and incompressible stochastic Navier–Stokes equations. J. Comput. Phys. 205, 94133.Google Scholar
Cameron, R. & Martin, W. 1947 The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals. Ann. Math. 48, 385.CrossRefGoogle Scholar
Canavan, G. 1970 Some properties of a Lagrangian Wiener-Hermite expansion. J. Fluid Mech. 41, 405412.CrossRefGoogle Scholar
Carati, D., Winckelmans, G. S. & Jeanmart, H. 2001 On the modelling of the subgrid-scale and filtered-scale stress tensors in large-eddy simulation. J. Fluid Mech. 441, 119138.CrossRefGoogle Scholar
Chorin, A. 1974 Gaussian fields and random flow. J. Fluid Mech. 85, 325347.Google Scholar
Crow, S. & Canavan, G. 1970 Relationship between a wiener-hermite expansion and an energy cascade. J. Fluid Mech. 41, 387403.CrossRefGoogle Scholar
Deardoff, J. W. 1970 A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453480.CrossRefGoogle Scholar
Deodatis, G. 1991 Weighted integral method. I: stochastic stiffness matrix. J. Engng Mech. 117 (8), 18511864.Google Scholar
Deodatis, G. & Shinozuka, M. 1991 Weighted integral method. II: response variability and reliability. J. Engng Mech. 117 (8), 18651877.Google Scholar
Fishman, G. 1996 Monte Carlo: Concepts, Algorithms, and Applications. Springer.CrossRefGoogle Scholar
Frauenfelder, P., Schwab, C. & Todor, R. 2005 Finite elements for elliptic problems with stochastic coefficients. Comput. Meth. Appl. Mech. Engng 193, 205228.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence. Cambridge University Press.CrossRefGoogle Scholar
Fureby, C. & Tabor, G. 1997 Mathematical and physical constraints on large-eddy simulations. Theor. Comput. Fluid Dyn. 9, 85102.CrossRefGoogle Scholar
Germano, M. 1992 Turbulence: the filtering approach. J. Fluid Mech. 238, 325336.CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 17601765.CrossRefGoogle Scholar
Geurts, B. J. & FrÖhlich, J. 2002 A framework for predicting accuracy limitations in Large Eddy Simulations. Phys. Fluids 14, L41L44.CrossRefGoogle Scholar
Ghanem, R. 1999 Ingredients for a general purpose stochastic finite element formulation. Comput. Meth. Appl. Mech. Engng 168, 1934.CrossRefGoogle Scholar
Ghanem, R. & Brzakala, W. 1996 Stochastic finite-element analysis of soil layers with random interface. ASCE J. Engng Mech. 122, 361369.CrossRefGoogle Scholar
Ghanem, R. & Dham, S. 1998 Stochastic finite element analysis for multiphase flow in heterogeneous porous media. Transp. Porous Media 32, 239262.CrossRefGoogle Scholar
Ghanem, R. & Hayek, B. 2002 Probabilistic modeling of flow over rough terrain. Trans. ASME: J. Fluids Engng 124, 4250.Google Scholar
Ghanem, R. & Red-Horse, J. 1999 Propagation of uncertainty in complex physical systems using a stochastic finite elements approach. Physica D 133, 137144.Google Scholar
Ghanem, R. & Spanos, P. 1991 Stochastic Finite Elements: a Spectral Approach. Springer.CrossRefGoogle Scholar
Ghosal, S. 1996 An analysis of numerical errors in large-eddy simulations of turbulence. J. Comput. Phys. 125, 187206.CrossRefGoogle Scholar
Ghosal, S. 1999 Mathematical and physical constraints on large-eddy simulation of turbulence. AIAA J. 37, 425433.CrossRefGoogle Scholar
Hien, T. & Kleiber, M. 1997 Stochastic finite element modelling in linear transient heat transfer. Comput. Meth. Appl. Mech. Engng 144, 111124.CrossRefGoogle Scholar
Hien, T. & Kleiber, M. 1998 On solving nonlinear transient heat transfer problems with random parameters. Comput. Meth. Appl. Mech. Engng 151, 287299.CrossRefGoogle Scholar
Hou, T. Y., Luo, W., Rozovskii, B. & Zhou, H.-M. 2006 Wiener chaos expansions and numerical solutions of randomly forced equations of fluid mechanics. J. Comput. Phys. 216, 687706.CrossRefGoogle Scholar
Hughes, T. J. R., Mazzei, L. & Oberai, A. A. 2001 The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence. Phys. Fluids 13, 505512.CrossRefGoogle Scholar
Jiménez, J. 1999 On eddy-viscosity sub-grid models. In Direct and Large-Eddy Simulation III (ed. Voke, P. R., Sandham, N. D. & Kleiser, L.), pp. 75–86.Google Scholar
Jiménez, J. & Moser, R. D. 2000 Large-eddy simulations: where are we and what can we expect? AIAA J. 38, 605612.CrossRefGoogle Scholar
Keese, A. 2005 Numerical solution of systems with stochastic uncertainties: a general purpose framework for stochastic finite elements. PhD thesis, Technische Universitat Braunschweig, Mechanik-Zentrum.Google Scholar
Kleiber, M. & Hien, T. 1992 The Stochastic Finite Element Method. John Wiley & Sons.Google Scholar
Knio, O. & Le Maître, O. 2006 Uncertainty propagation in CFD using polynomial chaos decomposition. Fluid Dyn. Res. 38 (9), 616640.CrossRefGoogle Scholar
Koekoek, R. & Swarttouw, R. 1998 The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Tech. Rep. 98-17. Department of Technical Mathematics and Informatics, Delft University of Technology.Google Scholar
Le Maitre, O. Knio, O., Najm, H. & Ghanem, R. 2001 A stochastic projection method for fluid flow. i. basic formulation. J. Comput. Phys. 173, 481511.CrossRefGoogle Scholar
Le Maitre, O., Najm, H., Ghanem, R. & Knio, O. 2004 Multi-resolution analysis of wiener-type uncertainty propagation schemes. J. Comput. Phys. 197, 502531.CrossRefGoogle Scholar
Le Maitre, O., Reagan, M., Najm, H., Ghanem, R. & Knio, O. 2002 A stochastic projection method for fluid flow. ii. random process. J. Comput. Phys. 181, 944.CrossRefGoogle Scholar
Li, R. & Ghanem, R. 1998 Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration. Prob. Engng Mech. 13 (2), 125136.CrossRefGoogle Scholar
Lilly, D. K. 1966 On the application of the eddy-viscosity concept in the inertial sub-range of turbulence. Tech. Rep. 123. NCAR.Google Scholar
Lilly, D. K. 1967 The representation of small-scale turbulence in numerical simulation experiments. In Proceedings of IBM Scientific Computing Symposium on Environmental Siences. IBM Data Processing Division, White Plains, New York.Google Scholar
Liu, P.-L. & DerKiureghian, A. Kiureghian, A. 1991 Finite element reliability of geometrically nonlinear uncertain structures. J. Engng Mech. 117, 18061825.Google Scholar
Lucor, D. 2004 Generalized Polynomial Chaos: applications to random oscillators and flow-structure interactions. PhD thesis, Brown University.CrossRefGoogle Scholar
Lucor, D. & Karniadakis, G. 2004 a Adaptive generalized polynomial chaos for nonlinear random oscillators. SIAM J. Sci. Comput. 26 (2), 720735.CrossRefGoogle Scholar
Lucor, D. & Karniadakis, G. 2004 b Noisy Inflows Cause a Shedding-Mode Switching in Flow past an Oscillating Cylinder. Phys. Rev. Lett. 92, 154501–1; 154501–4.CrossRefGoogle Scholar
McComb, W. D., Hunter, A. & Johnston, C. 2001 Conditional mode elimination and the subgrid modeling problem for isotropic turbulence. Phys. Fluids 13, 20302044.CrossRefGoogle Scholar
McMillan, O. J. & Ferziger, J. H. 1979 Direct testing of subgrid-scale models. AIAA J. 17, 13401346.CrossRefGoogle Scholar
Meecham, W. & Jeng, D. 1968 Use of the wiener-hermite expansion for nearly normal turbulence. J. Fluid Mech. 32, 225249.CrossRefGoogle Scholar
Meneveau, C. 1994 Statistics of turbulence subgrid-scale stresses: Necessary conditions and experimental tests. Phys. Fluids 6, 815833.CrossRefGoogle Scholar
Meneveau, C. & Lund, T. S. 1997 The dynamic Smagorinsky model and scale-dependent coefficients in the viscous range of turbulence. Phys. Fluids 9, 39323934.CrossRefGoogle Scholar
Meyers, J., Geurts, B. J. & Baelmans, M. 2003 Database-analysis of errors in large-eddy simulation. Phys. Fluids 15, 27402755.CrossRefGoogle Scholar
Meyers, J., Geurts, B. J. & Baelmans, M. 2005 Optimality of the dynamic procedure for large-eddy simulations. Phys. Fluids 17, 045108.CrossRefGoogle Scholar
Meyers, J. & Sagaut, P. 2006 On the model coefficients for the standard and the variational multi-scale Smagorinsky model. J. Fluid Mech. 569, 287319.CrossRefGoogle Scholar
Meyers, J., Sagaut, P. & Geurts, B. J. 2006 Optimal model parameters for multi-objective large-eddy simulations. Phys. Fluids 18, 095103.CrossRefGoogle Scholar
Nicoud, F. & Ducros, F. 1999 Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62, 183200.CrossRefGoogle Scholar
Ogura, H. 1972 Orthogonal functionals of the Poisson process. IEEE Trans. Info. Theory IT-18, 473481.CrossRefGoogle Scholar
Orszag, S. & Bissonnette, L. 1967 Dynamical properties of truncated Wiener-Hermite expansions. Phys. Fluids 10, 26032613.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Porté-Agel, F., Meneveau, C. & Parlange, M. B. 2000 A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmosoheric boundary layer. J. Fluid Mech. 415, 261284.CrossRefGoogle Scholar
Sagaut, P. 2006 Large Eddy Simulations for Incompressible flows, 3rd edn. Springer.Google Scholar
Schoutens, W. 1999 Stochastic processes in the Askey scheme. PhD thesis, K.U. Leuven.Google Scholar
Shinozuka, M. & Deodatis, G. 1988 Response variability of stochastic finite element systems. J. Engng Mech. 114, 499519.Google Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weath. Rev. 91, 99165.2.3.CO;2>CrossRefGoogle Scholar
Spanos, P. & Ghanem, R. 1989 Stochastic finite element expansion for random media. ASCE J. Engng Mech. 115, 10351053.CrossRefGoogle Scholar
Tatang, M., Pan, W., Prinn, R. & McRae, G. 1997 An efficient method for parametric uncertainty analysis of numerical geophysical models. J. Geophys. Res. 102, 2192521932.CrossRefGoogle Scholar
Vanmarcke, E. & Grigoriu, M. 1983 Stochastic finite element analysis of simple beams. J. Engng Mech. 109, 12031214.Google Scholar
VÖlker, S., Moser, R. D. & Venugopal, P. 2002 Optimal large eddy simulation of turbulent channel flow based on direct numerical simulation data. Phys. Fluids 14, 36753691.CrossRefGoogle Scholar
Vreman, A. W. 2004 An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys. Fluids 16, 36703681.CrossRefGoogle Scholar
Vreman, B., Geurts, B. & Kuerten, H. 1996 Comparison of numerical schemes in large-eddy simulations of the temporal mixing layer. Intl J. Numer. Meth. Fluids 22, 297311.3.0.CO;2-X>CrossRefGoogle Scholar
Vreman, B., Geurts, B. J. & Kuerten, H. 1994 Realizability conditions for the turbulent stress tensor in large-eddy simulation. J. Fluid Mech. 278, 351362.CrossRefGoogle Scholar
Voke, P. R. 1996 Subgrid-scale modelling at low mesh Reynolds number. Theor. Comput. Fluid Dyn. 8, 131143.CrossRefGoogle Scholar
Wan, X. & Karniadakis, G. 2005 An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J. Comput. Phys. 209, 617642.CrossRefGoogle Scholar
Wan, X. & Karniadakis, G. 2006 Stochastic heat transfer enhancement in a grooved channel. J. Fluid Mech. 565, 255278.CrossRefGoogle Scholar
Webster, M., Tatang, M. & McRae, G. 1996 Application of the probabilistic collocation method for an uncertainty analysis of a simple ocean model. MIT Joint Program on the Science and Policy of Global Change Reports Series 4. MIT.Google Scholar
Wiener, N. 1938 The homogeneous chaos. Am. J. Maths 60, 897936.CrossRefGoogle Scholar
Xiu, D. & Karniadakis, G. 2002 The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619644.CrossRefGoogle Scholar
Xiu, D. & Karniadakis, G. 2003 a Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187, 137167.CrossRefGoogle Scholar
Xiu, D. & Karniadakis, G. 2003 b A new stochastic approach to transient heat conduction modeling with uncertainty. Intl J. Heat Mass Transfer 46, 46814693.CrossRefGoogle Scholar
Zhang, D. & Lu, Z. 2004 An efficient, high-order perturbation approach for flow in random porous media via karhunen-loeve and polynomial expansions. J. Comput. Phys. 194, 773794.CrossRefGoogle Scholar
Zhu, W., Ren, Y. & Wu, W. 1992 Stochastic FEM based on local average of random vector fields. J. Engng Mech. 118, 496511.Google Scholar
Zh, W. & Wu, W. 1991 A stochastic finite element method for real eigenvalue problems. Prob. Engng Mech. 6, 228232.CrossRefGoogle Scholar