Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-19T12:37:40.809Z Has data issue: false hasContentIssue false

A semi-Lagrangian direct-interaction closure of the spectra of isotropic variable-density turbulence

Published online by Cambridge University Press:  31 July 2019

David J. Petty*
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Southern California, 854 Downey Way, Los Angeles, CA 90089, USA
C. Pantano
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Southern California, 854 Downey Way, Los Angeles, CA 90089, USA
*
Email address for correspondence: [email protected]

Abstract

A study of variable-density homogeneous stationary isotropic turbulence based on the sparse direct-interaction perturbation (SDIP) and supporting direct numerical simulations (DNS) is presented. The non-solenoidal flow considered here is an example of turbulent mixing of gases with different densities. The spectral statistics of this type of flow are substantially more difficult to understand theoretically than those of the similar solenoidal flows. In the approach described here, the nonlinearly coupled velocity and scalar (which determine the density of the fluid) equations are expanded in terms of a normalised density ratio parameter. A new set of coupled integro-differential SDIP equations are derived and then solved numerically for the first-order correction to the incompressible equations in the variable-density expansion parameter. By adopting a regular expansion approach, one obtains leading-order corrections that are universal and therefore interesting in their own right. The predictions are then compared with DNS of forced variable-density flow with different density contrasts. It is found that the velocity spectrum owing to variable density is indistinguishable from that of constant-density turbulence, as it is supported by a wealth of indirect experimental evidence, but the scalar spectra show significant deviations, and even loss of monotonicity, as a function of the type and strength of the large-scale source of the mixing. Furthermore, the analysis helps clarify what may be the proper approach to interpret the power spectrum of variable-density turbulence.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertoglio, J. P., Bataille, F. & Marion, J. D. 2001 Two-point closures for weakly compressible turbulence. Phys. Fluids 13 (1), 290310.Google Scholar
Bos, W. J. & Bertoglio, J. P. 2013 Lagrangian Markovianized field approximation for turbulence. J. Turbul. 14 (1), 99120.Google Scholar
Brasseur, J. G. & Wei, C. H. 1994 Interscale dynamics and local isotropy in high Reynolds-number turbulence. Phys. Fluids 6 (2), 842870.Google Scholar
Cambon, C., Jeandel, D. & Mathieu, J. 1981 Spectral modelling of homogeneous non-isotropic turbulence. J. Fluid Mech. 104, 247262.Google Scholar
Cambon, C. & Scott, J. F. 1999 Linear and nonlinear models of anisotropic turbulence. Annu. Rev. Fluid Mech. 31, 153.Google Scholar
Chassaing, P., Antonia, R. A., Anselmet, F., Joly, L. & Sarkar, S. 2002 Variable Density Fluid Turbulence. Kluwer Academic.Google Scholar
Domaradzki, J. A. & Carati, D. 2007 An analysis of the energy transfer and the locality of nonlinear interactions in turbulence. Phys. Fluids 19 (8), 085112.Google Scholar
Domaradzki, J. A. & Rogallo, R. S. 1990 Local energy-transfer and nonlocal interactions in homogeneous, isotropic turbulence. Phys. Fluids 2 (3), 413426.Google Scholar
Eyink, G. L. 2005 Locality of turbulent cascades. Physica D 207 (1), 91116.Google Scholar
Favre, A. 1965a Equations des gaz turbulents compressibles. Part 1. J. Méc. 4, 361390.Google Scholar
Favre, A. 1965b Equations des gaz turbulents compressibles. Part 2. J. Méc. 4, 391421.Google Scholar
Goto, S. & Kida, S. 1999 Passive scalar spectrum in isotropic turbulence: prediction by the Lagrangian direct-interaction approximation. Phys. Fluids 11 (7), 19361952.Google Scholar
Goto, S. & Kida, S. 2002 Spareness of nonlinear coupling: importance in sparse direct-interaction perturbation. Nonlinearity 15 (5), 14991520.Google Scholar
Gotoh, T., Nagaki, J. & Kaneda, Y. 2000 Passive scalar spectrum in the viscous-convective range in two-dimensional steady turbulence. Phys. Fluids 12 (1), 155168.Google Scholar
Griewank, A., Juedes, D. & Utke, J. 1996 Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++ . ACM Trans. Math. Softw. 22, 131167.Google Scholar
Helland, K. N., VanAtta, C. W. & Stegen, G. R. 1977 Spectral energy-transfer in high Reynolds-number turbulence. J. Fluid Mech. 79, 337359.Google Scholar
Kaneda, Y. 1981 Renormalized expansions in the theory of turbulence with the use of the Lagrangian position function. J. Fluid Mech. 107, 131145.Google Scholar
Kaneda, Y. 1986 Inertial range structure of turbulent velocity and scalar fields in a Lagrangian renormalized approximation. Phys. Fluids 29 (3), 701708.Google Scholar
Kaneda, Y. 2007 Lagrangian renormalized approximation of turbulence. Fluid Dyn. Res. 39 (7), 526551.Google Scholar
Kida, S. & Goto, S. 1997 A Lagrangian direct-interaction approximation for homogeneous isotropic turbulence. J. Fluid Mech. 345, 307345.Google Scholar
Kida, S. & Orszag, S. A. 1990 Energy and spectral dynamics in forced compressible turbulence. J. Sci. Comput. 5 (2), 85125.Google Scholar
Kim, J., Bassenne, M., Towery, C. A. Z., Hamlington, P. E., Poludnenko, A. Y. & Urzay, J. 2018 Spatially localized multi-scale energy transfer in turbulent premixed combustion. J. Fluid Mech. 848, 78116.Google Scholar
Knaus, R. & Pantano, C. 2009 On the effect of heat release in turbulence spectra of non-premixed reacting shear layers. J. Fluid Mech. 626, 67109.Google Scholar
Kolla, H., Hawkes, E. R., Kerstein, A. R., Swaminatham, N. & Chen, J. H. 2014 On velocity and reactive scalar spectra in turbulent premixed flames. J. Fluid Mech. 754, 456487.Google Scholar
Kolmogorov, A. N. 1941a Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32 (1), 1618.Google Scholar
Kolmogorov, A. N. 1941b The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30 (4), 301305.Google Scholar
Kraichnan, R. H. 1959 The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5 (4), 497543.Google Scholar
Kraichnan, R. H. 1965 Lagrangian-history closure approximation for turbulence. Phys. Fluids 8 (4), 575598.Google Scholar
Kraichnan, R. H. 1968 Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11 (5), 945953.Google Scholar
Leslie, D. C. 1973 Developments in the Theory of Turbulence. Oxford University Press.Google Scholar
Lumley, J. L. 1964 The spectrum of nearly inertial turbulence in a stably stratified fluid. J. Atmos. Sci. 21, 99102.Google Scholar
McComb, W. D. 1974 A local energy-transfer theory of isotropic turbulence. J. Phys. A: Math. Gen. 7 (5), 632642.Google Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, chap. 12. pp. 4958. Dover.Google Scholar
O’Gorman, P. A. & Pullin, D. I. 2005 Effect of Schmidt number on the velocity-scalar cospectrum in isotropic turbulence with a mean scalar gradient. J. Fluid Mech. 532, 111140.Google Scholar
Ohkitani, K. & Kida, S. 1992 Triad interactions in a forced turbulence. Phys. Fluids A 4 (4), 794802.Google Scholar
O’Kane, T. J. & Frederiksen, J. S. 2004 The QDIA and regularized QDIA closures for inhomogeneous turbulence over topography. J. Fluid Mech. 504, 133165.Google Scholar
Orszag, S. A. 1970 Analytical theories of turbulence. J. Fluid Mech. 41 (2), 363386.Google Scholar
Sagaut, P. & Cambon, C. 2008 Homogeneous Turbulence Dynamics. Cambridge University Press.Google Scholar
Sreenivasan, K. R. 1995 On the universality of the Kolmogorov constant. Phys. Fluids 7 (11), 27782784.Google Scholar
Sreenivasan, K. R. 1996 The passive scalar spectrum and the Obukhov–Corrsin constant. Phys. Fluids 8 (1), 189196.Google Scholar
Uberoi, M. S. 1963 Energy transfer in isotropic turbulence. Phys. Fluids 6 (8), 10481056.Google Scholar
Ulitsky, M. & Collins, L. R. 2000 On constructing realizable, conservative mixed scalar equations using the eddy-damped quasi-normal Markovian theory. J. Fluid Mech. 412, 303329.Google Scholar
Waleffe, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A 4 (2), 350363.Google Scholar
Wyld, H. W. 1961 Formulation of the theory of turbulence in an incompressible fluid. Ann. Phys. 14, 143165.Google Scholar
Yu, R. & Bai, X.-S. 2014 A fully divergence-free method for generation of inhomogeneous and anisotropic turbulence with large spatial variation. J. Comput. Phys. 256, 234253.Google Scholar
Zhou, Y. 1993 Degrees of locality of energy transfer in the inertial range. Phys. Fluids A 5 (5), 10921094.Google Scholar