Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T18:38:00.011Z Has data issue: false hasContentIssue false

Self-excited primary and secondary instability of laminar separation bubbles

Published online by Cambridge University Press:  13 November 2020

Daniel Rodríguez*
Affiliation:
ETSIAE-UPM (School of Aeronautics), Universidad Politécnica de Madrid, Plaza del Cardenal Cisneros 3, 28040Madrid, Spain
Elmer M. Gennaro
Affiliation:
São Paulo State University (UNESP), Campus of São João da Boa Vista, São João da Boa Vista-SP 13876-750, Brazil
Leandro F. Souza
Affiliation:
Institute of Mathematical and Computer Sciences, University of São Paulo, São Carlos-SP13566-590, Brazil
*
Email address for correspondence: [email protected]

Abstract

The self-excited instabilities acting on laminar separation bubbles in the absence of external forcing are studied by means of linear stability analysis and direct numerical simulation. Previous studies demonstrated the existence of a three-dimensional modal instability, that becomes active for bubbles with peak reversed flow of approximately $7\,\%$ of the free-stream velocity, well below the ${\approx } 16\,\%$ required for the absolute instability of Kelvin–Helmholtz waves. Direct numerical simulations are used to describe the nonlinear evolution of the primary instability, which is found to correspond to a supercritical pitchfork bifurcation and results in fully three-dimensional flows with spanwise inhomogeneity of finite amplitude. An extension of the classic weakly non-parallel analysis is then applied to the bifurcated flows, that have a strong dependence on the cross-stream planes and a mild dependence on the streamwise direction. The spanwise distortion of the separated flow induced by the primary instability is found to strongly destabilize the Kelvin–Helmholtz waves, leading to their absolute instability and the appearance of a global oscillator-type instability. This sequence of instabilities triggers the laminar–turbulent transition without requiring external disturbances or actuation. The characteristic frequency and streamwise and spanwise wavelengths of the self-excited instability are in good agreement with those reported for low-turbulence wind-tunnel experiments without explicit forcing. This indicates that the inherent dynamics described by the self-excited instability can also be relevant when external disturbances are present.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Åkervik, E., Brandt, L., Henningson, D. S., Hoepffner, J., Marxen, O. & Schlatter, P. 2006 Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18, 068102.CrossRefGoogle Scholar
Alam, M. & Sandham, N. D. 2000 Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, 128.CrossRefGoogle Scholar
Albensoeder, S., Kuhlmann, H. C. & Rath, H. J. 2001 Three-dimensional centrifugal-flow instabilities in the lid-driven cavity problem. Phys. Fluids 13, 121135.CrossRefGoogle Scholar
Alizard, F., Cherubini, S. & Robinet, J. C. 2009 Sensitivity and optimal forcing response in separated boundary layer flows. Phys. Fluids 21, 064108.CrossRefGoogle Scholar
Allen, T. & Riley, N. 1995 Absolute and convective instabilities in separation bubbles. Aeronaut. J. 99, 439448.Google Scholar
Amestoy, P. R., Duff, I. S., L'Excellent, J.-Y. & Koster, J. 2001 A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Applics. 23 (1), 1541.CrossRefGoogle Scholar
Arbey, H. & Bataille, J. 1983 Noise generated by airfoil profiles placed in a uniform laminar flow. J. Fluid Mech. 134, 3347.CrossRefGoogle Scholar
Avanci, M. P., Rodríguez, D. & Alves, L. S. B. 2019 A geometrical criterion for absolute instability in laminar separation bubbles. Phys. Fluids 31, 014103.CrossRefGoogle Scholar
Bagheri, S., Schlatter, P., Schmid, P. J. & Henningson, D. S. 2009 Global stability of a jet in crossflow. J. Fluid Mech. 624, 3344.CrossRefGoogle Scholar
Balzer, W. & Fasel, H. F. 2016 Numerical investigation of the role of free-stream turbulence in boundary-layer separation. J. Fluid Mech. 801, 289321.CrossRefGoogle Scholar
Barkley, D., Gomes, M. G. M. & Henderson, R. D. 2002 Three-dimensional instability in a flow over a backward-facing step. J. Fluid Mech. 473, 167190.CrossRefGoogle Scholar
Beaudoin, J. F., Cadot, O., Aider, J. L. & Wesfreid, J. E. 2004 Three-dimensional stationary flow over a backward-facing step. Eur. J. Mech. B/Fluids 23, 147155.CrossRefGoogle Scholar
Bippes, H. & Turk, M. 1980 Windkanalmessungen in einem Rechteckflügel bei anliegender und abgelöster Strömung. Tech. Rep. DFVLR Forschungsbericht IB 251-80 A 18.Google Scholar
Brès, G. A. & Colonius, T. 2008 Three-dimensional instabilities in compressible flow over open cavities. J. Fluid Mech. 599, 309339.CrossRefGoogle Scholar
Carter, J. E. 1975 Inverse solutions for laminar boundary-layer flows with separation and reattachment. Tech. Rep. NASA TR R-447. NASA.CrossRefGoogle Scholar
Cherubini, S., Robinet, J. C. & de Palma, B. 2010 a The effects of non-normality and nonlinearity of the Navier–Stokes operator on the dynamics of a large laminar separation bubble. Phys. Fluids 22, 014102.CrossRefGoogle Scholar
Cherubini, S., Robinet, J. C., de Palma, B. & Alizard, F. 2010 b The onset of three-dimensional centrifugal global modes and their nonlinear development in a recirculating flow over a flat-surface. Phys. Fluids 22, 114102.CrossRefGoogle Scholar
Chomaz, J. M., Huerre, P. & Redekopp, L. G. 1988 Bifurcation to local and global modes in spatially developing flows. Phys. Rev. Lett. 60, 2528.CrossRefGoogle Scholar
Dallmann, U. & Schewe, G. 1987 On topological changes of separating flow structures at transition reynolds numbers. In 16th Fluid Dynamics, Plasma Dynamics and Lasers Conference, AIAA Paper 87-1266.Google Scholar
Diwan, S. S., Chetan, S. J. & Ramesh, O. N. 2006 On the bursting criterion for laminar separation bubbles. In Sixth IUTAM Symposium on Laminar-turbulent Transition (ed. R. Govindarajan), pp. 401–407. Springer.Google Scholar
Diwan, S. S. & Ramesh, O. N. 2009 On the origin of the inflectional instability of a laminar separation bubble. J. Fluid Mech. 629, 263298.CrossRefGoogle Scholar
Diwan, S. S. & Ramesh, O. N. 2012 Relevance of local parallel theory to the linear stability of laminar separation bubbles. J. Fluid Mech. 698, 468478.CrossRefGoogle Scholar
Diwan, S. S. 2009 Dynamics of early stages of transition in a laminar separation bubble. PhD thesis, Indian Institute of Science, Bangalore, India.Google Scholar
Dovgal, A. V., Kozlov, V. V. & Michalke, A. 1994 Laminar boundary layer separation: instability and associated phenomena. Prog. Aerosp. Sci. 3, 6194.CrossRefGoogle Scholar
Ehrenstein, U. & Gallaire, F. 2008 Two-dimensional global low-frequency oscillations in a separating boundary-layer flow. J. Fluid Mech. 614, 315327.CrossRefGoogle Scholar
Embacher, M. & Fasel, H. F. 2014 Direct numerical simulations of laminar separation bubbles: investigation of absolute instability and active flow control of transition to turbulence. J. Fluid Mech. 747, 141185.CrossRefGoogle Scholar
Fasel, H. F. & Postl, D. 2004 Interaction of separation and transition of three-dimensional development in boundary layer transition. In Sixth IUTAM Symposium on Laminar-Turbulent Transition (ed. R. Govindarajan), pp. 71–88. Springer.Google Scholar
Feldman, Y. & Gelfgat, A. Y. 2010 Oscillatory instability of a 3D lid-driven flow in a cube. Phys. Fluids 22, 093602.Google Scholar
Gallaire, F., Marquillie, M. & Ehrenstein, U. 2007 Three-dimensional transverse instabilities in detached boundary layers. J. Fluid Mech. 571, 221233.CrossRefGoogle Scholar
Gaster, M. 1963 On the instability of parallel shear layers and the behaviour of laminar separation bubbles. PhD thesis, Queen Mary College, London.Google Scholar
Gaster, M. 1967 The structure and behaviour of separation bubbles. Tech. Rep. 3595, NPL Rep- & Memoranda.Google Scholar
Gaster, M. 2004 Laminar separation bubbles. In Sixth IUTAM Symposium on Laminar-Turbulent Transition (ed. R. Govindarajan), pp. 1–13. Springer.CrossRefGoogle Scholar
Gennaro, E. M., Rodríguez, D., Medeiros, M. A. F. & Theofilis, V. 2013 Sparse techniques in global flow instability with application to compressible leading-edge flow. AIAA J. 51 (9), 22952303.CrossRefGoogle Scholar
Gennaro, E. M., Souza, B. D. P. & Rodríguez, D. 2019 The effect of compressibility on the primary global instability of unforced laminar separation bubbles. J. Braz. Soc. Mech. Sci. Engng 41 (12), 559.CrossRefGoogle Scholar
Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167197.Google Scholar
Gómez, F., Clainche, S. Le, Paredes, P., Hermanns, M. & Theofilis, V. 2012 Four decades of studying global linear instability: progress and challenges. AIAA J. 50 (12), 27312743.CrossRefGoogle Scholar
Hammond, D. A. & Redekopp, L. G. 1998 Local and global instability properties of separation bubbles. Eur. J. Mech. B/Fluids 17, 145164.Google Scholar
Hornung, H. G. & Perry, A. E. 1984 Some aspects of three-dimensional separation. Part I. Streamsurface bifurcations. Z. Flugwiss. Weltraumforsch. 8, 7787.Google Scholar
Hosseinverdi, S. & Fasel, H. F. 2013 Direct numerical simulations of transition to turbulence in two-dimensional laminar separation bubbles. In 51st AIAA Aerospace Sciences Meeting, AIAA Paper 2013-0264.Google Scholar
Hosseinverdi, S. & Fasel, H. F. 2018 Role of klebanoff modes in active flow control of separation: direct numerical simulation. J. Fluid Mech. 850, 954983.CrossRefGoogle Scholar
Hosseinverdi, S. & Fasel, H. F. 2019 Numerical investigation of laminar-turbulent transition in laminar separation bubbles: the effect of free-stream turbulence. J. Fluid Mech. 858, 714759.CrossRefGoogle Scholar
Howarth, L. 1934 On calculation of the steady flow in the boundary layer near the surface of a cylinder in a stream. A.R.C. Reports and Memoranda 1632.Google Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.CrossRefGoogle Scholar
Jones, B. M. 1934 Stalling. J. R. Aero. Soc. 38, 747770.Google Scholar
Jones, L. E., Sandberg, R. D. & Sandham, N. D. 2008 Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J. Fluid Mech. 602, 175207.CrossRefGoogle Scholar
Jordi, B. E., Cotter, C. J. & Sherwin, S. J. 2014 Encapsulated formulation of the selective frequency damping method. Phys. Fluids 26, 034101.CrossRefGoogle Scholar
Juniper, M. P. & Pier, B. 2015 The structural sensitivity of open shear flows calculated with a local stability analysis. Eur. J. Mech. B/Fluids 49, 426437.CrossRefGoogle Scholar
Juniper, M. P., Tammisola, O. & Lundell, F. 2011 The local and global stability of confined planar wakes at intermediate reynolds number. J. Fluid Mech. 686, 218238.CrossRefGoogle Scholar
Karaca, S. & Gungor, A. G. 2016 DNS of unsteady effects on the control of laminar separated boundary layers. Eur. J. Mech. B/Fluids 56, 7181.CrossRefGoogle Scholar
Kawahara, G., Jimémez, J., Uhlmann, M. & Pinelli, A. 2003 Linear instability of a corrugated vortex sheet – a model for streak instability. J. Fluid Mech. 483, 315342.CrossRefGoogle Scholar
Kitsios, V., Rodríguez, D., Theofilis, V., Ooi, A. & Soria, J. 2009 Biglobal stability analysis in curvilinear coordinates of massively separated lifting bodies. J. Comput. Phys. 228, 71817196.CrossRefGoogle Scholar
Kloker, M. & Konzelmann, U. 1993 Outflow boundary conditions for spatial Navier–Stokes simulations of transitional boundary layers. AIAA J. 31, 620628.CrossRefGoogle Scholar
Kurelek, J. W., Kotsonis, M. & Yarusevych, S. 2018 Transition in a separation bubble under tonal and broadband acoustic excitation. J. Fluid Mech. 853, 136.CrossRefGoogle Scholar
Kurelek, J. W., Kotsonis, M. & Yarusevych, S. 2019 Vortex merging in a laminar separation bubble under natural and forced conditions. Phys. Rev. Fluids 4, 063903.CrossRefGoogle Scholar
Kurelek, J. W., Lambert, A. R. & Yarusevych, S. 2016 Coherent structures in the transition process of a laminar separation bubble. AIAA J. 54 (8), 22952309.CrossRefGoogle Scholar
Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 1642.CrossRefGoogle Scholar
Li, H. J. & Yang, Z. 2019 Separated boundary layer transition under pressure gradient in the presence of freestream turbulence. Phys. Fluids 31, 104106.Google Scholar
Linnick, M. N. & Fasel, H. F. 2005 A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains. J. Comput. Phys. 204, 157192.CrossRefGoogle Scholar
Loiseau, J.-C., Robinet, J.-C., Cherubini, S. & Leriche, E. 2014 Investigation of the roughness-induced transition: global stability analysis and direct numerical simulations. J. Fluid Mech. 760, 175211.Google Scholar
Marant, M. & Cossu, C. 2018 Influence of optimally amplified streamwise streaks on the Kelvin–Helmholtz instability. J. Fluid Mech. 838, 478500.CrossRefGoogle Scholar
Marquet, O., Lombardi, M., Chomaz, J. M., Sipp, D. & Jacquin, L. 2009 Direct and adjoint global modes of a recirculation bubble: lift-up and convective non-normalities. J. Fluid Mech. 622, 121.CrossRefGoogle Scholar
Marquet, O., Sipp, D., Chomaz, J. M. & Jacquin, L. 2008 Amplifier and resonator dynamics of a low-Reynolds-number recirculation bubble in a global framework. J. Fluid Mech. 605, 429443.CrossRefGoogle Scholar
Marquillie, M. & Ehrenstein, U. 2003 On the onset of nonlinear oscillations in a separating boundary-layer flow. J. Fluid Mech. 490, 169188.CrossRefGoogle Scholar
Marxen, O. & Henningson, D. S. 2011 The effect of small-amplitude convective disturbances on the size and bursting of a laminar separation bubble. J. Fluid Mech. 671, 133.CrossRefGoogle Scholar
Marxen, O., Lang, M. & Rist, U. 2012 Discrete linear local eigenmodes in a separating laminar boundary layer. J. Fluid Mech. 711, 126.CrossRefGoogle Scholar
Marxen, O., Lang, M. & Rist, U. 2013 Vortex formation and vortex breakup in laminar separation bubbles. J. Fluid Mech. 728, 5890.CrossRefGoogle Scholar
Marxen, O., Lang, M., Rist, U., Levin, O. & Henningson, D. S. 2009 Mechanisms for spatial steady three-dimensional disturbance growth in a non-parallel and separating boundary layer. J. Fluid Mech. 634, 165189.CrossRefGoogle Scholar
Marxen, O. & Rist, U. 2010 Mean flow deformation in a laminar separation bubble: separation and stability characteristics. J. Fluid Mech. 660, 3754.CrossRefGoogle Scholar
McCullough, G. B. & Gault, D. E. 1951 Examples of three representative types of airfoil-section stall at low speed. TN 2502, NACA.Google Scholar
Michelis, T., Yarusevych, S. & Kotsonis, M. 2017 Response of a laminar separation bubble to impulsive forcing. J. Fluid Mech. 820, 633666.CrossRefGoogle Scholar
Michelis, T., Yarusevych, S. & Kotsonis, M. 2018 On the origin of spanwise vortex deformations in laminar separation bubbles. J. Fluid Mech. 841, 81108.Google Scholar
Mitra, A. & Ramesh, O. N. 2019 New correlation for the prediction of bursting of a laminar separation bubble. AIAA J. 57 (4), 14001408.CrossRefGoogle Scholar
Nash, E. C., Lowson, M. V. & McAlpine, A. 1999 Boundary-layer instability noise on aerofoils. J. Fluid Mech. 382, 2761.CrossRefGoogle Scholar
Passaggia, P.-Y., Leweke, T. & Ehrenstein, U. 2012 Transverse instability and low-frequency flapping in incompressible separated boundary layer flows: an experimental study. J. Fluid Mech. 703, 363373.CrossRefGoogle Scholar
Pauley, L. P., Moin, P. & Reynolds, W. C. 1990 The structure of two-dimensional separation. J. Fluid Mech. 220, 397411.CrossRefGoogle Scholar
Pauley, L. L. 1994 Structure of local pressure-driven three-dimensional transient boundary-layer separation. AIAA J. 32 (5), 9971005.CrossRefGoogle Scholar
Petri, L. A., Sartori, P., Rogenski, J. K. & de Souza, L. F. 2015 Verification and validation of a direct numerical simulation code. Comput. Meth. Appl. Mech. Engng 291, 266279.CrossRefGoogle Scholar
Pier, B. 2002 On the frequency selection of finite-amplitude vortex shedding in the cylinder wake. J. Fluid Mech. 458, 407417.CrossRefGoogle Scholar
Pier, B. 2008 Local and global instabilities in the wake of a sphere. J. Fluid Mech. 603, 3961.CrossRefGoogle Scholar
Reyhner, T. A. & Flügge-Lotz, I. 1968 The interaction of a shock wave with a laminar boundary-layer. Intl J. Non-Linear Mech. 3 (2), 179199.CrossRefGoogle Scholar
Rist, U. & Augustin, K. 2006 Control of laminar separation bubbles using instability waves. AIAA J. 44 (10), 22172223.Google Scholar
Rist, U. & Maucher, U. 1994 Direct numerical simulation of 2–d and 3–d instability waves in a laminar separation bubble. In AGARD-CP-551 Application of Direct and Large Eddy Simulation to Transition and Turbulence (ed. B. Cantwell), pp. 34–1–7.Google Scholar
Rist, U. & Maucher, U. 2002 Investigations of time-growing instabilities in laminar separation bubbles. Eur. J. Mech. B/Fluids 21, 495509.CrossRefGoogle Scholar
Robinet, J. Ch. 2007 Bifurcations in shock-wave/laminar-boundary-layer interaction: global instability approach. J. Fluid Mech. 579, 85112.CrossRefGoogle Scholar
Robinet, J.-C. 2013 Instabilities in laminar separation bubbles. J. Fluid Mech. 732, 14.CrossRefGoogle Scholar
Rodríguez, D. 2010 Global stability of laminar separation bubbles. PhD thesis, Universidad Politécnica de Madrid.Google Scholar
Rodríguez, D. & Gennaro, E. M. 2015 On the secondary instability of forced and unforced laminar separation bubbles. Procedia IUTAM 14, 7887.CrossRefGoogle Scholar
Rodríguez, D. & Gennaro, E. M. 2017 Three-dimensional flow stability analysis based on the matrix-forming approach made affordable. In International Conference on Spectral and High-Order Methods 2016 (ed. J. S. Hesthaven), Lecture Notes in Computational Science and Engineering. Springer.CrossRefGoogle Scholar
Rodríguez, D. & Gennaro, E. M. 2019 Enhancement of disturbance wave amplification due to the intrinsic three-dimensionalisation of laminar separation bubbles. Aeronaut. J. 123 (1268), 14921507.CrossRefGoogle Scholar
Rodríguez, D., Gennaro, E. M. & Juniper, M. P. 2013 a On the two classes of global primary modal instability in laminar separation bubbles. AIAA Paper 2013-2621.CrossRefGoogle Scholar
Rodríguez, D., Gennaro, E. M. & Juniper, M. P. 2013 b The two classes of primary modal instability in laminar separation bubbles. J. Fluid Mech. 734, R4.CrossRefGoogle Scholar
Rodríguez, D. & Theofilis, V. 2010 a On the birth of stall cells on airfoils. Theor. Comput. Fluid Dyn. 25, 105117.CrossRefGoogle Scholar
Rodríguez, D. & Theofilis, V. 2010 b Structural changes of laminar separation bubbles induced by global linear instability. J. Fluid Mech. 655, 280305.Google Scholar
Saxena, V., Leibovich, S. & Berkooz, G. 1999 Enhancement of three-dimensional instability of free shear layers. J. Fluid Mech. 379, 2338.CrossRefGoogle Scholar
Schlichting, H. 1979 Boundary Layer Theory, 7th edn. McGraw-Hill.Google Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.CrossRefGoogle Scholar
Serna, J. & Lázaro, B. J. 2014 The final stages of transition and the reattachment region in transitional separation bubbles. Exp. Fluids 55, 1695.CrossRefGoogle Scholar
Serna, J. & Lázaro, B. J. 2015 On the bursting condition for transitional separation bubbles. Aerosp. Sci. Technol. 44, 4350.CrossRefGoogle Scholar
Siconolfi, L., Citro, V., Giannetti, F., Camarri, S. & Luchini, P. 2017 Towards a quantitative comparison between global and local stability analysis. J. Fluid Mech. 819, 147167.CrossRefGoogle Scholar
Simoni, D., Lengani, D., Ubaldi, M., Zunino, P. & Dellacasagrande, M. 2017 Inspection of the dynamic properties of laminar separation bubbles: free-stream turbulence intensity effects for different reynolds numbers. Exp. Fluids 58 (66), 114.CrossRefGoogle Scholar
Spalart, P. R. & Strelets, M. Kh. 2000 Mechanisms of transition and heat transfer in a separation bubble. J. Fluid Mech. 403, 329349.CrossRefGoogle Scholar
Strüben, K. & Trottenberg, U. 1981 Lecture notes in mathematics. In Nonlinear Multigrid Methods: the Full Approximation Scheme, pp. 58–71. Köln-Porz.Google Scholar
Tezuka, A. & Suzuki, K. 2006 Three-dimensional global linear stability analysis of flow around a spheroid. AIAA J. 44, 16971708.CrossRefGoogle Scholar
Theofilis, V. 2011 Global linear stability. Annu. Rev. Fluid Mech. 43, 319352.CrossRefGoogle Scholar
Theofilis, V., Duck, P. W. & Owen, J. 2004 Viscous linear stability analysis of rectangular duct and cavity flows. J. Fluid Mech. 505, 249286.CrossRefGoogle Scholar
Theofilis, V., Hein, S. & Dallmann, U. 2000 On the origins of unsteadiness and three-dimensionality in a laminar separation bubble. Phil. Trans. R. Soc. Lond. A 358, 32293246.CrossRefGoogle Scholar
de Vicente, J., Basley, J., Meseguer-Garrido, F., Soria, J. & Theofilis, V. 2014 Three-dimensional instabilities over a rectangular open cavity: from linear stability analysis to experimentation. J. Fluid Mech. 748, 189220.CrossRefGoogle Scholar
Watmuff, J. H. 1999 Evolution of a wave packet into vortex loops in a laminar separation bubble. J. Fluid Mech. 397, 119169.CrossRefGoogle Scholar
Xu, H., Mughal, S. M., Gowree, E. R., Atkin, C. J. & Sherwin, S. J. 2017 Destabilisation and modification of Tollmien–Schlichting disturbances by a three-dimensional surface indentation. J. Fluid Mech. 819, 592620.CrossRefGoogle Scholar
Zaman, K. M. B. Q., McKinzie, D. J. & Rumsey, C. L. 1989 A natural low-frequency oscillation of the flow over an airfoil near stalling conditions. J. Fluid Mech. 202, 403442.CrossRefGoogle Scholar
Zhang, W. & Samtaney, R. 2016 Biglobal linear stability analysis on low-re flow past an airfoil at high angle of attack. Phys. Fluids 28, 044015.CrossRefGoogle Scholar