Article contents
Self-diffusion of bimodal suspensions of hydrodynamically interacting spherical particles in shearing flow
Published online by Cambridge University Press: 26 April 2006
Abstract
We study the average mobilities and long-time self-diffusion coefficients of a suspension of bimodally distributed spherical particles. Stokesian dynamics is used to calculate the particle trajectories for a monolayer of bimodal-sized spheres. Hydrodynamic forces only are considered and they are calculated using the inverse of the grand mobility matrix for far-field many-body interactions and lubrication formulae for near-field effects. We determine both the detailed microstructure (e.g. the pair-connectedness function and cluster formation) and the macroscopic properties (e.g. viscosity and self-diffusion coefficients). The flow of an ‘infinite’ suspension is simulated by considering 25, 49, 64 and 100 particles to be one ‘cell’ of a periodic array. Effects of both the size ratio and the relative fractions of the different-sized particles are examined. For the microstructures, the pair-connectedness function shows that the particles form clusters in simple shearing flow due to lubrication forces. The nearly symmetric angular structures imply the absence of normal stress differences for a suspension with purely hydrodynamic interactions between spheres. For average mobilities at infinite Péclet number, Ds0, our simulation results suggest that the reduction of Ds0 as concentration increases is directly linked to the influence of particle size distribution on the average cluster size. For long-time self-diffusion coefficients, Ds∞, we found good agreement between simulation and experiment (Leighton & Acrovos 1987 a; Phan and Leighton 1993) for monodispersed suspensions. For bimodal suspensions, the magnitude of Ds∞, and the time to reach the asymptotic diffusive behaviour depend on the cluster size formed in the system, or the viscosity of the suspension. We also consider the effect of the initial configuration by letting the spheres be both organized (size segregated) and randomly placed. We find that it takes a longer time for a suspension with an initially organized structure to achieve steady state than one with a random structure.
- Type
- Research Article
- Information
- Copyright
- © 1994 Cambridge University Press
References
- 25
- Cited by