Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T12:24:35.510Z Has data issue: false hasContentIssue false

Segregation of a liquid mixture by a radially oscillating bubble

Published online by Cambridge University Press:  19 April 2007

OLIVIER LOUISNARD
Affiliation:
Laboratoire de Génie des Procédés des Solides Divisés, Ecole des Mines d'Albi, 81013 Albi Cedex 09, France
FRANCISCO J. GOMEZ
Affiliation:
Laboratorio de Ultrasonidos, Dpto. de Fisica, Universidad de Santiago de Chile, Casilia 302, Santiago, Chile
ROMAIN GROSSIER
Affiliation:
Laboratoire de Génie des Procédés des Solides Divisés, Ecole des Mines d'Albi, 81013 Albi Cedex 09, France

Abstract

A theoretical formulation is proposed for forced mass transport by pressure gradients in a liquid binary mixture around a spherical bubble undergoing volume oscillations in a sound field. Assuming the impermeability of the bubble wall to both species, diffusion driven by pressure gradients and classical Fick-diffusion must cancel at the bubble wall, so that an oscillatory concentration gradient arises in the vicinity of the bubble. The Péclet number pe is generally high in typical situations and Fick diffusion cannot restore equilibrium immediately, so that an asymptotic average concentration profile may progressively build up in the liquid over large times. Such a behaviour is reminiscent of the so-called rectified diffusion problem, leading to slow growth of a gas bubble oscillating in a sound field. A rigorous method formerly proposed by Fyrillas & Szeri (J. Fluid Mech. vol. 277, 1994, p. 381) to solve the latter problem is used to solve the present one. It is based on splitting the problem into a smooth part and an oscillatory part. The smooth part is solved by a multiple scales method and yields the slowly varying average concentration field everywhere in the liquid. The oscillatory part is obtained by matched asymptotic expansions in terms of the small parameter pe−1/2: the inner solution is required to satisfy the oscillatory balance between pressure diffusion and Fick diffusion at the bubble wall, while the outer solution is required to be zero. Matching both solutions yields a unique splitting of the problem. The final analytical solution, truncated to leading order, compares successfully to direct numerical simulation of the full convection–diffusion equation. The analytical expressions for both smooth and oscillatory parts are calculated for various sets of bubble parameters: driving pressure, frequency and ambient radius. The smooth problem always yields an average depletion of the heaviest species at the bubble wall, only noticeable for large molecules or nano-particles. For driving pressures sufficiently high to yield inertial oscillations of the bubble, the oscillatory problem predicts a periodic peak excess concentration of the heaviest species at the bubble wall at each collapse, lingering on several tens of the time of the characteristic duration of the bubble rebound. The two effects may compete for large molecules and practical implications of this segregation phenomenon are proposed for various processes involving acoustic cavitation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhatov, I., Gumerov, N., Ohl, C., Parlitz, U. & Lauterborn, W. 1997 The role of surface tension in stable single bubble sonoluminescence. Phys. Rev. Lett. 78, 227230.CrossRefGoogle Scholar
Archibald, W. J. 1938 The process of diffusion in a centrifugal field of force. Phys. Rev. 53, 746752.CrossRefGoogle Scholar
Bird, R. B., Stewart, W. E. & Lightfoot, E. N. 1960 Transport Phenomena. John Wiley.Google Scholar
Brenner, M. P., Hilgenfeldt, S. & Lohse, D. 2002 Single-bubble sonoluminescence. Rev. Mod. Phys. 74, 425483.CrossRefGoogle Scholar
Crum, L. A., Mason, T. J., Reisse, J. L. & Suslick, K. S., (ed.) 1999 Sonochemistry and Sonoluminescence, Proc. NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, USA, 18–29 August 1997, Kluwer.Google Scholar
Eller, A. & Flynn, H. G. 1965 Rectified diffusion during nonlinear pulsations of cavitation bubbles. J. Acoust. Soc. Am. 37, 493503.CrossRefGoogle Scholar
Fujikawa, S. & Akamatsu, T. 1980 Effects of the nonequilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. J. Fluid Mech. 97, 481512.CrossRefGoogle Scholar
Fyrillas, M. M. & Szeri, A. J. 1994 Dissolution or growth of soluble spherical oscillating bubbles. J. Fluid Mech. 277, 381407.CrossRefGoogle Scholar
Fyrillas, M. M. & Szeri, A. J. 1995 Dissolution or growth of soluble spherical oscillating bubbles: the effect of surfactants. J. Fluid Mech. 289, 295314.CrossRefGoogle Scholar
Fyrillas, M. M. & Szeri, A. J. 1996 Surfactant dynamics and rectified diffusion of microbubbles. J. Fluid Mech. 311, 361378.CrossRefGoogle Scholar
Hickling, R. & Plesset, M. S. 1964 Collapse and rebound of a spherical bubble in water. Phys. Fluids 7, 714.CrossRefGoogle Scholar
Hilgenfeldt, S., Lohse, D. & Brenner, M. P. 1996 Phase diagrams for sonoluminescing bubbles. Phys. Fluids 8 (11), 28082826.CrossRefGoogle Scholar
Hilgenfeldt, S., Brenner, M. P., Grossman, S. & Lohse, D. 1998 Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles. J. Fluid Mech. 365, 171204.CrossRefGoogle Scholar
Hirschfelder, J. O., Curtiss, C. F. & Bird, R. B. 1967 Molecular Theory of Gases and Liquids. John Wiley.Google Scholar
Hsieh, D. Y. & Plesset, M. S. 1961 Theory of rectified diffusion of mass into gas bubbles. J. Acoust. Soc. Am. 33, 206215.CrossRefGoogle Scholar
Kaschiev, D. 2000 Nucleation : Basic Theory with Applications. Butterworth–Heinemann.Google Scholar
Keller, J. B. & Miksis, M. 1980 Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68, 628633.CrossRefGoogle Scholar
Larson, M. A. & Garside, J. 1986 Solute clustering in supersaturated solutions. Chem. Engng Sci. 41, 12851289.CrossRefGoogle Scholar
Lin, H., Storey, B. D. & Szeri, A. J. 2002 Rayleigh–Taylor instability of violently collapsing bubbles. Phys. Fluids 14, 29252928.CrossRefGoogle Scholar
Louisnard, O. & Gomez, F. 2003 Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids. Phys. Rev. E 67 (036610), 112.Google ScholarPubMed
Lyczko, N., Espitalier, F., Louisnard, O. & Schwartzentruber, J. 2002 Effect of ultrasound on the induction time and the metastable zone widths of potassium sulphate. Chem. Engng J. 86, 233241.CrossRefGoogle Scholar
Mullin, J. W. & Leci, C. L. 1969 Evidence of molecular cluster formation in supersaturated solutions of citric acid. Phil. Mag. 19 (161), 10751077.CrossRefGoogle Scholar
Plesset, M. S. & Zwick, S. A. 1952 A nonsteady heat diffusion problem with spherical symmetry. J. Appl. Phys. 23, 9598.CrossRefGoogle Scholar
Prosperetti, A. 1999 Old-fashioned bubble dynamics. In Sonochemistry and Sonoluminescence (ed. Crum, L. A., Mason, T. J., Reisse, J. L. & Suslick, K. S.), Proc. NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, USA, 18–29 August 1997, Kluwer.Google Scholar
Prosperetti, A. & Lezzi, A. 1986 Bubble dynamics in a compressible liquid. Part 1. First-order theory. J. Fluid Mech. 168, 457478.CrossRefGoogle Scholar
Storey, B. D. & Szeri, A. 2000 Water vapour, sonoluminescence and sonochemistry. Proc. R. Soc. Lond. A 456, 16851709.CrossRefGoogle Scholar
Storey, B. D. & Szeri, A. 2001 A reduced model of cavitation physics for use in sonochemistry. Proc. R. Soc. Lond. A 457, 16851700.CrossRefGoogle Scholar
Storey, B. D. & Szeri, A. J. 1999 Mixture segregation within sonoluminescence bubbles. J. Fluid Mech. 396, 203221.CrossRefGoogle Scholar
Toegel, R., Gompf, B., Pecha, R. & Lohse, D. 2000 Does water vapor prevent upscaling sonoluminescence? Phys. Rev. Lett. 85, 31653168.CrossRefGoogle ScholarPubMed
Tomita, Y. & Shima, A. 1977 On the behaviour of a spherical bubble and the impulse pressure in a viscous compressible liquid. Bull. JSME 20, 14531460.CrossRefGoogle Scholar
Zygmund, A. 1959 Trigonometric Series. Cambridge University Press.Google Scholar