Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T15:48:33.898Z Has data issue: false hasContentIssue false

Scattering of surface gravity waves by bottom topography with a current

Published online by Cambridge University Press:  28 March 2007

FABRICE ARDHUIN
Affiliation:
Centre Militaire d'Océanographie, Service Hydrographique et Océanographique de la Marine, 29275 Brest, Franceardhuin@shom.fr
RUDY MAGNE
Affiliation:
Centre Militaire d'Océanographie, Service Hydrographique et Océanographique de la Marine, 29275 Brest, Franceardhuin@shom.fr

Abstract

A theory is presented that describes the scattering of random surface gravity waves by small-amplitude topography, with horizontal scales of the order of the wavelength, in the presence of an irrotational and almost uniform current. A perturbation expansion of the wave action to order η2 yields an evolution equation for the wave action spectrum, where η = max(h)/H is the small-scale bottom amplitude normalized by the mean water depth. Spectral wave evolution is proportional to the bottom elevation variance at the resonant wavenumbers, representing a Bragg scattering approximation. With a current, scattering results from a direct effect of the bottom topography, and an indirect effect of the bottom through the modulations of the surface current and mean surface elevation. For Froude numbers of the order of 0.6 or less, the bottom topography effects dominate. For all Froude numbers, the reflection coefficients for the wave amplitudes that are inferred from the wave action source term are asymptotically identical, as η goes to zero, to previous theoretical results for monochromatic waves propagating in one dimension over sinusoidal bars. In particular, the frequency of the most reflected wave components is shifted by the current, and wave action conservation results in amplified reflected wave energies for following currents. Application of the theory to waves over current-generated sandwaves suggests that forward scattering can be significant, resulting in a broadening of the directional wave spectrum, while back-scattering should be generally weaker.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, D. G. & McIntyre, M. E. 1978 On wave action and its relatives. J. Fluid Mech. 89, 647664, and corrigendum: vol. 95, p. 796.CrossRefGoogle Scholar
Annenkov, S. Y. & Shrira, V. I. 2006 A note on Hasselmann's energy-transfer model. J. Fluid Mech. 561, 181207.CrossRefGoogle Scholar
Ardhuin, F. & Herbers, T. H. C. 2002 Bragg scattering of random surface gravity waves by irregular sea bed topography. J. Fluid Mech. 451, 133.CrossRefGoogle Scholar
Ardhuin, F., Herbers, T. H. C., Jessen, P. F. & O'Reilly, W. C. 2003 a Swell transformation across the continental shelf. part II: validation of a spectral energy balance equation. J. Phys. Oceanogr. 33, 19401953.2.0.CO;2>CrossRefGoogle Scholar
Ardhuin, F., O'Reilly, W. C., Herbers, T. H. C. & Jessen, P. F. 2003b Swell transformation across the continental shelf. part I: Attenuation and directional broadening. J. Phys. Oceanogr. 33, 19211939.2.0.CO;2>CrossRefGoogle Scholar
Bal, G. & Chou, T. 2002 Capillary-gravity wave transport over spatially random drift. Wave Motion 35, 107124.CrossRefGoogle Scholar
Belibassakis, K. A., Athanassoulis, G. A. & Gerostathis, T. P. 2001 A coupled-mode model for the refraction-diffraction of linear waves over steep three-dimensional bathymetry. Appl. Ocean Res. 23, 319336.CrossRefGoogle Scholar
Belzons, M., Guazzelli, E. & Parodi, O. 1988 Gravity waves on a rough bottom: experimental evidence of one-dimensional localization. J. Fluid Mech. 186, 539558.CrossRefGoogle Scholar
Benney, D. J. & Saffman, P. G. 1966 Nonlinear interactions of random waves in a dispersive medium. Proc. R. Soc. Lond. A 289, 301380.Google Scholar
Dalrymple, R., Knight, R. J. & Lambiase, J. J. 1978 Bedforms and their hydraulic stability relationships in a tidal environment, bay of Fundy, Canada. Nature 275, 100104.CrossRefGoogle Scholar
Davies, A. G. & Heathershaw, A. D. 1984 Surface-wave propagation over sinusoidally varying topography. J. Fluid Mech. 144, 419443.CrossRefGoogle Scholar
Elfouhaily, T. M. & Guérin, C.-A. 2004 A critical survey of approximate scattering wave theories from random rough surfaces. Waves in Random Media 14, 140.CrossRefGoogle Scholar
Elter, J. F. & Molyneux, J. E. 1972 The long-distance propagation of shallow water waves over an ocean of random depth. J. Fluid Mech. 53, 115.CrossRefGoogle Scholar
Fabrikant, A. L. & Raevsky, M. A. 1994 The influence of drift flow turbulence on surface gravity wave propagation. J. Fluid Mech. 262, 141156.CrossRefGoogle Scholar
Guazzelli, E., Rey, V. & Belzons, M. 1992 Higher-order Bragg reflection of gravity surface waves by periodic beds. J. Fluid Mech. 245, 301317.CrossRefGoogle Scholar
Hara, T. 1986 Resonant reflection of water waves by periodic sandbars. Master's thesis, Department of Civil Engineering, University of Tokyo, Japan.Google Scholar
Hara, T. & Mei, C. C. 1987 Bragg scattering of surface waves by periodic bars: theory and experiment. J. Fluid Mech. 178, 221241.CrossRefGoogle Scholar
Hasselmann, K. 1962 On the non-linear energy transfer in a gravity wave spectrum, part 1: general theory. J. Fluid Mech. 12, 481501.CrossRefGoogle Scholar
Hasselmann, K. 1966 Feynman diagrams and interaction rules of wave-wave scattering processes. Rev. Geophys. 4, 132.CrossRefGoogle Scholar
Heathershaw, A. D. 1982 Seabed-wave resonance and sand bar growth. Nature 296, 343345.CrossRefGoogle Scholar
Herbers, T. H. C., Orzech, M., Elgar, S. & Guza, R. T. 2003 Shoaling transformation of wave-frequency directional spectra. J. Geophys. Res. 108 (C1), 3013, doi:10.1029/2001JC001304.Google Scholar
Idier, D., Erhold, A. & Garlan, T. 2002 Morphodynamique d'une dune sous-marine du détroit du Pas de Calais. C. R. Géosci. 334, 10791085.CrossRefGoogle Scholar
Janssen, T. T., Herbers, T. H. C. & Battjes, J. A. 2006 Generalized evolution equation for nonlinear surface gravity waves over two-dimensional topography. J. Fluid Mech. 552, 393418.CrossRefGoogle Scholar
Kirby, J. T. 1986 A general wave equation for waves over rippled beds. J. Fluid Mech. 162, 171186.CrossRefGoogle Scholar
Kirby, J. T. 1988 Current effects on resonant reflection of surface water waves by sand bars. J. Fluid Mech. 186, 501520.CrossRefGoogle Scholar
Kirby, J. T. & Chen, T.-M. 1989 Surface waves on vertically sheared flows: approximate dispersion relations. J. Geophys. Res. 94 (C1), 10131027.CrossRefGoogle Scholar
Kreisel, G. 1949 Surface waves. Q. J. Appl. Maths 7, 2144.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1950 A theory of the origin of microseisms. Proc. R. Soc. Lond. A 243, 135.Google Scholar
Longuet-Higgins, M. S. 1967 On the wave-induced difference in mean sea level between the two sides of a submerged breakwater. J. Mar. Res. 25, 148153.Google Scholar
Magne, R., Ardhuin, F., Rey, V. & Herbers, T. H. C. 2005a Topographical scattering of waves: spectral approach. J. Waterway, Port Coast. Ocean Engng 131, 311320.CrossRefGoogle Scholar
Magne, R., Rey, V. & Ardhuin, F. 2005b Measurement of wave scattering by topography in the presence of currents. Phys. Fluids 17, 126601.CrossRefGoogle Scholar
Mei, C. C. 1985 Resonant reflection of surface water waves by periodic sandbars. J. Fluid Mech. 152, 315335.CrossRefGoogle Scholar
Miles, J. 1981 Oblique surface-wave diffraction by a cylindrical obstacle. Dyn. Atmos. Oceans 6, 121123.CrossRefGoogle Scholar
Onorato, M., Osborne, A. R., Serio, M., Cavaleri, L., Brandini, C. & Stansberg, C. T. 2005 Observation of strongly non-gaussian statistics for random sea surface gravity waves in wave flume experiments. Phys. Rev. E 70, 067302.Google Scholar
Phillips, O. M. 1977 The Dynamics of the Upper Ocean. Cambridge University Press.Google Scholar
Pihl, J., Mei, C. C. & Hancock, M. 2002 Surface gravity waves over a two-dimensional random seabed. Phys. Rev. E 66, 016611.Google Scholar
Priestley, M. B. 1981 Spectral Analysis and Time Series. Academic.Google Scholar
Rayevskiy, M. A. 1983 On the propagation of gravity waves in randomly inhomogeneous nonstrady-state currents. Izv. Atmos. Ocean. Phys. 19 (6), 475479.Google Scholar
Rayleigh, Lord 1896 The Theory of Sound, 3rd edn. Macmillan.Google Scholar
Rey, V. 1992 Propagation and local behaviour of normally incident gravity waves over varying topography. Eur. J. Mech. B/Fluids 11, 213232.Google Scholar
Ryzhik, L., Papanicolaou, G. & Keller, J. B. 1996 Transport equations for elastic and other waves in random media. Wave Motion 24, 327370, and corrigendum: vol. 95, p. 796.CrossRefGoogle Scholar
Watson, K. M. & West, B. J. 1975 A transport-equation description of nonlinear ocean surface wave interactions. J. Fluid Mech. 70, 815826.CrossRefGoogle Scholar
Weber, N. 1991 Bottom friction for wind sea and swell in extreme depth-limited situations. J. Phys. Oceanogr. 21, 149172.2.0.CO;2>CrossRefGoogle Scholar
Yu, J. & Mei, C. C. 2000 Do longshore bars shelter the shore? J. Fluid Mech. 404, 251268.CrossRefGoogle Scholar