Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T06:58:31.122Z Has data issue: false hasContentIssue false

Scaling of streamwise boundary layer streaks and their ability to reduce skin-friction drag

Published online by Cambridge University Press:  19 September 2013

S. Shahinfar
Affiliation:
Linné Flow Centre, KTH Mechanics, SE-10044 Stockholm, Sweden
J. H. M. Fransson*
Affiliation:
Linné Flow Centre, KTH Mechanics, SE-10044 Stockholm, Sweden
S. S. Sattarzadeh
Affiliation:
Linné Flow Centre, KTH Mechanics, SE-10044 Stockholm, Sweden
A. Talamelli
Affiliation:
Linné Flow Centre, KTH Mechanics, SE-10044 Stockholm, Sweden DIN, Alma Mater Studiorum – Università di Bologna, I-47100 Forlì, Italy
*
Email address for correspondence: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Spanwise arrays of miniature vortex generators (MVGs) are used to generate energetic transient disturbance growth, which is able to modulate the boundary layer flow with steady and stable streak amplitudes up to 32 % of the free-stream velocity. This type of modulation has previously been shown to act in a stabilizing manner on modal disturbance growth described by classical instability theory. In an attempt to reproduce a more realistic flow configuration, in the present experimental set-up, Tollmien–Schlichting (TS) waves are generated upstream of the MVG array, allowing for a complete interaction of the incoming wave with the array. Fifteen new MVG configurations are investigated and the stabilizing effect on the TS waves is quantified. We show that the streak amplitude definition is very important when trying to relate it to the stabilization, since it may completely bypass information on the mean streamwise velocity gradient in the spanwise direction, which is an essential ingredient of the observed stabilization. Here, we use an integral-based streak amplitude definition along with a streak amplitude scaling relation based on empiricism, which takes the spanwise periodicity of the streaks into account. The results show that, applying the integral definition, the optimal streak amplitude for attenuating TS wave disturbance growth is around 30 % of the free-stream velocity, which corresponds to ${\sim }20\hspace{0.167em} \% $ in the conventional definition when keeping the spanwise wavelength constant. The experiments also show that the disturbance energy level, based on the full velocity signal, is significantly reduced in the controlled case, and that the onset of transition may be inhibited altogether throughout the measured region in the presence of an MVG array.

Type
Papers
Creative Commons
Creative Common License - CCCreative Common License - BY
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .
Copyright
©2013 Cambridge University Press.

References

Andersson, P., Berggren, M. & Henningson, D. S. 1999 Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11, 134150.CrossRefGoogle Scholar
Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.Google Scholar
Asai, M., Minagawa, M. & Nishioka, M. 2002 The instability and breakdown of a near-wall low-speed streak. J. Fluid Mech. 455, 289314.Google Scholar
Boiko, A. V., Westin, K. J. A., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H. 1994 Experiments in a boundary layer subjected to free stream turbulence. Part 2. The role of TS-waves in the transition process. J. Fluid Mech. 281, 219245.CrossRefGoogle Scholar
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4, 16371650.Google Scholar
Camarri, S., Fransson, J. H. M. & Talamelli, A. 2013 Numerical investigation of the AFRODITE transition control strategy. In Progress in Turbulence V (ed. Talamelli, A., Oberlack, M. & Peinke, J.), pp. 6569. Springer.Google Scholar
Cossu, C. & Brandt, L. 2002 Stabilization of Tollmien–Schlichting waves by finite amplitude optimal streaks in the Blasius boundary layer. Phys. Fluids 14, L57L60.Google Scholar
Cossu, C. & Brandt, L. 2004 On Tollmien–Schlichting-like waves in streaky boundary layers. Eur. J. Mech./B Fluids 23, 815833.Google Scholar
Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18, 487488.CrossRefGoogle Scholar
Fransson, J. H. M. 2010 Turbulent spot evolution in spatially invariant boundary layers. Phys. Rev. E 81, 035301(R).Google Scholar
Fransson, J. H. M., Brandt, L., Talamelli, A. & Cossu, C. 2004 Experimental and theoretical investigation of the nonmodal growth of steady streaks in a flat plate boundary layer. Phys. Fluids 16 (10), 36273638.Google Scholar
Fransson, J. H. M., Brandt, L., Talamelli, A. & Cossu, C. 2005 Experimental study of the stabilisation of Tollmien–Schlichting waves by finite amplitude streaks. Phys. Fluids 17, 054110.CrossRefGoogle Scholar
Fransson, J. H. M., Fallenius, B. E. G., Shahinfar, S., Sattarzadeh, S. S. & Talamelli, A. 2011 Advanced fluid research on drag reduction in turbulence experiments –AFRODITE–. J. Phys.: Conf. Ser. 318, 032007.Google Scholar
Fransson, J. H. M. & Talamelli, A. 2011 Base flow modulations for skin-friction drag reduction. J. Phys.: Conf. Ser. 318, 032008.Google Scholar
Fransson, J. H. M. & Talamelli, A. 2012 On the generation of steady streamwise streaks in flat-plate boundary layers. J. Fluid Mech. 698, 211234.Google Scholar
Fransson, J. H. M., Talamelli, A., Brandt, L. & Cossu, C. 2006 Delaying transition to turbulence by a passive mechanism. Phys. Rev. Lett. 96, 064501.Google Scholar
Gustavsson, L. H. 1991 Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 224, 241260.CrossRefGoogle Scholar
Hultgren, L. S. & Gustavsson, L. H. 1981 Algebraic growth of disturbances in a laminar boundary layer. Phys. Fluids 24 (6), 10001004.Google Scholar
Johansson, A. V. & Alfredsson, P. H. 1982 On the structure of turbulent channel flow. J. Fluid Mech. 122, 295314.Google Scholar
Kachanov, Y. S. 1994 Physical mechanism of laminar boundary-layer transition. Annu. Rev. Fluid Mech. 26, 411482.CrossRefGoogle Scholar
Kachanov, Y. S. & Tararykin, O. I. 1987 Experimental investigation of a relaxing boundary layer. Proc. Siberian Div. USSR Acad. Sci., Ser. Tech. Sci. 18 (5), 919 (in Russian).Google Scholar
Klebanoff, P. S. 1971 Effect of free stream turbulence on the laminar boundary layer. Bull. Am. Phys. Soc. 10, 1323.Google Scholar
Klingmann, B. G. B., Boiko, A., Westin, K. J. A., Kozlov, V. V. & Alfredsson, P. H. 1993 Experiments on the stability of Tollmien–Schlichting waves. Eur. J. Mech.B/Fluids 12, 493514.Google Scholar
Kurian, T. & Fransson, J. H. M. 2011 Transient growth in the asymptotic suction boundary layer. Exp. Fluids 51, 771784.Google Scholar
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.CrossRefGoogle Scholar
Lindgren, B. & Johansson, A. V. 2002 Design and evaluation of a low-speed wind-tunnel with expanding corners. TRITA-MEK Tech. Rep. 2002:14. KTH, Stockholm.Google Scholar
Liu, Y., Zaki, T. A. & Durbin, P. A. 2008 Boundary-layer transition by interaction of discrete and continuous modes. J. Fluid Mech. 604, 199233.Google Scholar
Lögdberg, O., Fransson, J. H. M. & Alfredsson, P. H. 2009 Streamwise evolution of longitudinal vortices in a turbulent boundary layer. J. Fluid Mech. 623, 2758.Google Scholar
Luchini, P. 1996 Reynolds-number independent instability of the boundary layer over a flat surface. J. Fluid Mech. 327, 101115.Google Scholar
Luchini, P. 2000 Reynolds-number independent instability of the boundary layer over a flat surface. Part 2: optimal perturbations. J. Fluid Mech. 404, 289309.Google Scholar
Morkovin, M. V. 1969 The many faces of transition. In Viscous Drag Reduction (ed. Wells, C. S.), Plenum Press.Google Scholar
Reddy, S. C. & Henningson, D. S. 1993 Energy growth in viscous channel flows. J. Fluid Mech. 252, 209238.Google Scholar
Reshotko, E. 2001 Transient growth: a factor in bypass transition. Phys. Fluids 13, 10671075.Google Scholar
Schlatter, P., Deusebio, E., de Lange, R. & Brandt, L. 2010 Numerical study of the stabilisation of boundary-layer disturbances by finite amplitude streaks. Intl J. Flow Control 2, 259288.CrossRefGoogle Scholar
Schlichting, H. 1933 Berechnung der anfachung kleiner störungen bei der plattenströmung. Z. Angew. Math. Mech. 13, 171174.Google Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.Google Scholar
Schubauer, G. B. & Skramstad, H. K. 1947 Laminar boundary layer oscillations and the stability of laminar flow. J. Aero. Sci. 14, 6978.CrossRefGoogle Scholar
Shahinfar, S., Sattarzadeh, S. S., Fransson, J. H. M. & Talamelli, A. 2012 Revival of classical vortex generators now for transition delay. Phys. Rev. Lett. 109, 074501.Google Scholar
Tollmien, W. 1929 Über die entstehung der turbulenz. Nachr. Ges. Wiss. Göttingen 2124 (English translation NACA TM 609, 1931).Google Scholar
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.Google Scholar
White, E. B. 2002 Transient growth of stationary disturbances in a flat plate boundary layer. Phys. Fluids 14, 44294439.Google Scholar
White, E. B., Rice, J. M. & Ergin, G. 2005 Receptivity of stationary transient disturbances to surface roughness. Phys. Fluids 17, 064109.Google Scholar