Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T15:14:50.512Z Has data issue: false hasContentIssue false

Scaling behaviour of rotating convection in a spherical shell with different Prandtl numbers

Published online by Cambridge University Press:  25 October 2024

Wei Fan
Affiliation:
Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen 518055, PR China
Qi Wang
Affiliation:
Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen 518055, PR China
Yufeng Lin*
Affiliation:
Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen 518055, PR China Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology, Shenzhen 518055, PR China
*
Email address for correspondence: [email protected]

Abstract

Rayleigh–Bénard convection in a rotating spherical shell provides a simplified model for convective dynamics of planetary and stellar interiors. Over the past decades, the problem has been studied extensively via numerical simulations, but most previous simulations set the Prandtl number $Pr$ to unity. In this study we build more than 200 numerical models of rotating convection in a spherical shell over a wide range of $Pr$ ($10^{-2}\le Pr \le 10^2$). By increasing the Rayleigh number $Ra$, we characterise four different flow regimes, starting from the linear onset to multiple modes, then transitioning to the geostrophic turbulence and eventually approaching the weakly rotating regime. In the multiple modes regime, we show evidence of triadic resonances in numerical models with different $Pr$, which may provide a generic mechanism for the transition from laminar to turbulence in rotating convection. We analyse scaling behaviours of the heat transfer and convective flow speeds in numerical simulations, paying particular attention to the $Pr$ dependence. We find that the so-called diffusion-free scaling for the heat transfer cannot reconcile all numerical models with different $Pr$ in the geostrophic turbulence regime. However, the characteristic flow speeds at different $Pr$ roughly follow a unified scaling that can be described by visco-Archimedean–Coriolis force balances, though the scaling tends to approach the Coriolis-inertial-Archimedean force balance at low $Pr$. We also show that transition behaviours from rotating to non-rotating convection depend on $Pr$. The transition criteria based on heat transfer and flow morphology would be rather different when $Pr>1$, but the two criteria are consistent for cases with $Pr\le 1$. Both scaling behaviours and transition behaviours suggest that the heat transfer is controlled by the boundary layers while the convective flow speeds are mainly determined by the force balance in the bulk for cases with $Pr>1$, which is in line with recent experimental results with moderate to high $Pr$. For cases with $Pr \le 1$, both the heat transfer and convective velocities are approaching the inviscid dynamics in the bulk. We also briefly analysed the magnitude and scaling of zonal flows at different $Pr$, showing that the zonal flow amplitude rapidly increases as $Pr$ decreases.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbate, J.A. & Aurnou, J.M. 2023 Rotating convective turbulence in moderate to high Prandtl number fluids. Geophys. Astrophys. Fluid Dyn. 117 (6), 397436.CrossRefGoogle Scholar
Aubert, J., Brito, D., Nataf, H.-C., Cardin, P. & Masson, J.-P. 2001 A systematic experimental study of rapidly rotating spherical convection in water and liquid gallium. Phys. Earth Planet. Inter. 128 (1-4), 5174.CrossRefGoogle Scholar
Aurnou, J.M., Bertin, V., Grannan, A.M., Horn, S. & Vogt, T. 2018 Rotating thermal convection in liquid gallium: multi-modal flow, absent steady columns. J. Fluid Mech. 846, 846876.CrossRefGoogle Scholar
Aurnou, J.M., Calkins, M.A., Cheng, J.S., Julien, K., King, E.M., Nieves, D., Soderlund, K.M. & Stellmach, S. 2015 Rotating convective turbulence in earth and planetary cores. Phys. Earth Planet. Inter. 246, 5271.CrossRefGoogle Scholar
Aurnou, J.M., Heimpel, M. & Wicht, J. 2007 The effects of vigorous mixing in a convective model of zonal flow on the ice giants. Icarus 190 (1), 110126.CrossRefGoogle Scholar
Aurnou, J.M., Horn, S. & Julien, K. 2020 Connections between nonrotating, slowly rotating, and rapidly rotating turbulent convection transport scalings. Phys. Rev. Res. 2 (4), 113.CrossRefGoogle Scholar
Barik, A., Triana, S.A., Calkins, M., Stanley, S. & Aurnou, J. 2023 Onset of convection in rotating spherical shells: variations with radius ratio. Earth Space Sci. 10 (1), 119.CrossRefGoogle Scholar
Barker, A.J., Dempsey, A.M. & Lithwick, Y. 2014 Theory and simulations of rotating convection. Astrophys. J. 791 (1), 13.CrossRefGoogle Scholar
Busse, F.H. 1970 Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44, 441460.CrossRefGoogle Scholar
Busse, F.H. & Carrigan, C.R. 1976 Laboratory simulation of thermal convection in rotating planets and stars. Science 191 (4222), 8183.CrossRefGoogle ScholarPubMed
Busse, F.H. & Or, A.C. 1986 Convection in a rotating cylindrical annulus: thermal rossby waves. J. Fluid Mech. 166, 173187.CrossRefGoogle Scholar
Cardin, P. & Olson, P. 1994 Chaotic thermal convection in a rapidly rotating spherical shell: consequences for flow in the outer core. Phys. Earth Planet. Inter. 82, 235259.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Cheng, J.S., Aurnou, J.M., Julien, K. & Kunnen, R.P.J. 2018 A heuristic framework for next-generation models of geostrophic convective turbulence. Geophys. Astrophys. Fluid Dyn. 112 (4), 277300.CrossRefGoogle Scholar
Christensen, U.R. 2002 Zonal flow driven by strongly supercritical convection in rotating spherical shells. J. Fluid Mech. 470, 115133.CrossRefGoogle Scholar
Christensen, U.R & Aubert, J. 2006 Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Intl 166 (1), 97114.CrossRefGoogle Scholar
Davidson, P.A. 2014 The dynamics and scaling laws of planetary dynamos driven by inertial waves. Geophys. J. Intl 198 (3), 18321847.CrossRefGoogle Scholar
Dormy, E., Soward, A.M., Jones, C.A., Jault, D. & Cardin, P. 2004 The onset of thermal convection in rotating spherical shells. J. Fluid Mech. 501, 4370.CrossRefGoogle Scholar
Ecke, R.E. & Shishkina, O. 2023 Turbulent rotating Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 55, 603638.CrossRefGoogle Scholar
Gastine, T. & Aurnou, J.M. 2023 Latitudinal regionalization of rotating spherical shell convection. J. Fluid Mech. 954, R1.CrossRefGoogle Scholar
Gastine, T., Wicht, J. & Aubert, J. 2016 Scaling regimes in spherical shell rotating convection. J. Fluid Mech. 808, 690732.CrossRefGoogle Scholar
Gastine, T., Wicht, J. & Aurnou, J.M. 2015 Turbulent Rayleigh–Bénard convection in spherical shells. J. Fluid Mech. 778, 721764.CrossRefGoogle Scholar
Gastine, T., Yadav, R.K, Morin, J., Reiners, A. & Wicht, J. 2013 From solar-like to antisolar differential rotation in cool stars. Mon. Not. R. Astron. Soc. Lett. 438 (1), L76L80.CrossRefGoogle Scholar
Gillet, N. & Jones, C.A. 2006 The quasi-geostrophic model for rapidly rotating spherical convection outside the tangent cylinder. J. Fluid Mech. 554, 343369.CrossRefGoogle Scholar
Gilman, P.A. 1977 Nonlinear dynamics of Boussinesq convection in a deep rotating spherical shell-I. Geophys. Astrophys. Fluid Dyn. 8 (1), 93135.CrossRefGoogle Scholar
Guervilly, C. & Cardin, P. 2016 Subcritical convection of liquid metals in a rotating sphere using a quasi-geostrophic model. J. Fluid Mech. 808, 6189.CrossRefGoogle Scholar
Guervilly, C., Cardin, P. & Schaeffer, N. 2019 Turbulent convective length scale in planetary cores. Nature 570 (7761), 368371.CrossRefGoogle ScholarPubMed
Hawkins, E.K., Cheng, J..S, Abbate, J.A., Pilegard, T., Stellmach, S., Julien, K. & Aurnou, J.M. 2023 Laboratory models of planetary core-style convective turbulence. Fluids 8 (4), 106.CrossRefGoogle Scholar
Horn, S. & Schmid, P.J. 2017 Prograde, retrograde, and oscillatory modes in rotating Rayleigh–Bénard convection. J. Fluid Mech. 831, 182211.CrossRefGoogle Scholar
Jones, C.A. 2015 Thermal and compositional convection in the outer core. In Treatise on Geophysics (ed. G. Schubert), vol. 8, pp. 115–159. Elsevier.CrossRefGoogle Scholar
Jones, C.A., Soward, A.M. & Mussa, A.I. 2000 The onset of thermal convection in a rapidly rotating sphere. J. Fluid Mech. 405 (2000), 157179.CrossRefGoogle Scholar
Julien, K., Knobloch, E., Rubio, A.M. & Vasil, G.M. 2012 Heat transport in low-Rossby-number Rayleigh–Bénard convection. Phys. Rev. Lett. 109 (25), 254503.CrossRefGoogle ScholarPubMed
Kaplan, E.J., Schaeffer, N., Vidal, J. & Cardin, P. 2017 Subcritical thermal convection of liquid metals in a rapidly rotating sphere. Phys. Rev. Lett. 119 (9), 094501.CrossRefGoogle Scholar
Kerr, R.M. & Herring, J.R. 2000 Prandtl number dependence of Nusselt number in direct numerical simulations. J. Fluid Mech. 419, 325344.CrossRefGoogle Scholar
Kerswell, R.R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34 (1), 83113.CrossRefGoogle Scholar
King, E.M. & Aurnou, J.M. 2013 Turbulent convection in liquid metal with and without rotation. Proc. Natl Acad. Sci. USA 110 (17), 66886693.CrossRefGoogle ScholarPubMed
King, E.M. & Buffett, B.A. 2013 Flow speeds and length scales in geodynamo models: the role of viscosity. Earth Planet. Sci. Lett. 371, 156162.CrossRefGoogle Scholar
King, E.M., Stellmach, S & Buffett, B. 2013 Scaling behaviour in Rayleigh–Bénard convection with and without rotation. J. Fluid Mech. 717, 449471.CrossRefGoogle Scholar
King, E.M., Stellmach, S., Noir, J., Hansen, U. & Aurnou, J.M. 2009 Boundary layer control of rotating convection systems. Nature 457 (7227), 301304.CrossRefGoogle ScholarPubMed
Labrosse, S. 2003 Thermal and magnetic evolution of the earth's core. Phys. Earth Planet. Inter. 140 (1-3), 127143.CrossRefGoogle Scholar
Lam, K., Kong, D.-L. & Zhang, K.-K. 2018 Nonlinear thermal inertial waves in rotating fluid spheres. Geophys. Astrophys. Fluid Dyn. 112, 357374.CrossRefGoogle Scholar
Le Bars, M., Cébron, D. & Le Gal, P. 2015 Flows driven by libration, precession, and tides. Annu. Rev. Fluid Mech. 47, 163193.CrossRefGoogle Scholar
Li, X.-M., He, J.-D., Tian, Y., Hao, P. & Huang, S.-D. 2021 Effects of Prandtl number in quasi-two-dimensional Rayleigh–Bénard convection. J. Fluid Mech. 915, A60.CrossRefGoogle Scholar
Li, Y., Fruehan, R.J., Lucas, J.A. & Belton, G.R. 2000 The chemical diffusivity of oxygen in liquid iron oxide and a calcium ferrite. Metall. Trans. B 31, 10591068.CrossRefGoogle Scholar
Lin, Y. 2021 Triadic resonances driven by thermal convection in a rotating sphere. J. Fluid Mech. 909, R3.CrossRefGoogle Scholar
Lin, Y. & Jackson, A. 2021 Large-scale vortices and zonal flows in spherical rotating convection. J. Fluid Mech. 912, A46.CrossRefGoogle Scholar
Long, R.S., Mound, J.E., Davies, C.J. & Tobias, S.M. 2020 Scaling behaviour in spherical shell rotating convection with fixed-flux thermal boundary conditions. J. Fluid Mech. 889, A7.CrossRefGoogle Scholar
Miyagoshi, T., Kageyama, A. & Sato, T. 2010 Zonal flow formation in the Earth's core. Nature 463 (7282), 793796.CrossRefGoogle ScholarPubMed
Oliver, T.G, Jacobi, A.S, Julien, K. & Calkins, M.A 2023 Small scale quasigeostrophic convective turbulence at large Rayleigh number. Phys. Rev. Fluids 8 (9), 093502.CrossRefGoogle Scholar
Roberts, P.H. 1968 On the thermal instability of a rotating-fluid sphere containing heat sources. Phil. Trans. R. Soc. Lond. 263, 93117.Google Scholar
Schaeffer, N. 2013 Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations. Geochem. Geophys. Geosyst. 14 (3), 751758.CrossRefGoogle Scholar
Silano, G., Sreenivasan, K.R. & Verzicco, R. 2010 Numerical simulations of Rayleigh–Bénard convection for Prandtl numbers between 10-1 and 104 and Rayleigh numbers between 105 and 109. J. Fluid Mech. 662, 409446.CrossRefGoogle Scholar
Stevenson, D.J. 1979 Turbulent thermal convection in the presence of rotation and a magnetic field: a heuristic theory. Geophys. Astrophys. Fluid Dyn. 12 (1), 139169.CrossRefGoogle Scholar
Tilgner, A. & Busse, F.H. 1997 Finite-amplitude convection in rotating spherical fluid shells. J. Fluid Mech. 332, 359376.CrossRefGoogle Scholar
Verzicco, R. & Camussi, R. 1999 Prandtl number effects in convective turbulence. J. Fluid Mech. 383, 5573.CrossRefGoogle Scholar
Wang, G.-Q., Santelli, L., Lohse, D., Verzicco, R. & Stevens, R.J. 2021 Diffusion-free scaling in rotating spherical Rayleigh–Bénard convection. Geophys. Res. Lett. 48 (20), e2021GL095017.CrossRefGoogle ScholarPubMed
Wicht, J. 2002 Inner-core conductivity in numerical dynamo simulations. Phys. Earth Planet. Inter. 132 (4), 281302.CrossRefGoogle Scholar
de Wit, X.M., Aguirre Guzmán, A.J., Madonia, M., Cheng, J.S., Clercx, H.J.H. & Kunnen, R.P.J. 2020 Turbulent rotating convection confined in a slender cylinder: the sidewall circulation. Phys. Rev. Fluids 5 (2), 023502.CrossRefGoogle Scholar
Xia, K.-Q., Huang, S.-D., Xie, Y.-C. & Zhang, L. 2023 Tuning heat transport via coherent structure manipulation: recent advances in thermal turbulence. Natl Sci. Rev. 10 (6), nwad012.CrossRefGoogle ScholarPubMed
Yadav, R.K., Gastine, T., Christensen, U.R., Duarte, L. & Reiners, A. 2016 Effect of shear and magnetic field on the heat-transfer efficiency of convection in rotating spherical shells. Geophys. J. Intl 204 (2), 11201133.CrossRefGoogle Scholar
Zhang, K. 1992 Spiralling columnar convection in rapidly rotating spherical fluid shells. J. Fluid Mech. 236, 535556.CrossRefGoogle Scholar
Zhang, K. 1994 On coupling between the Poincaré equation and the heat equation. J. Fluid Mech. 268, 211229.CrossRefGoogle Scholar
Zhang, K. & Liao, X.-H. 2017 Theory and Modeling of Rotating Fluids: Convection, Inertial Waves and Precession. Cambridge University Press.CrossRefGoogle Scholar
Zhang, X., Ecke, R.E & Shishkina, O. 2021 Boundary zonal flows in rapidly rotating turbulent thermal convection. J. Fluid Mech. 915, A62.CrossRefGoogle Scholar
Zhang, X., Van Gils, D.P.M., Horn, S., Wedi, M., Zwirner, L., Ahlers, G., Ecke, R.E, Weiss, S., Bodenschatz, E. & Shishkina, O. 2020 a Boundary zonal flow in rotating turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 124 (8), 084505.CrossRefGoogle ScholarPubMed
Zhang, Y.-J, Hou, M.-Q., Liu, G.-T., Zhang, C.-W., Prakapenka, V.B, Greenberg, E., Fei, Y.-W., Cohen, R.E. & Lin, J.-F. 2020 b Reconciliation of experiments and theory on transport properties of iron and the geodynamo. Phys. Rev. Lett. 125 (7), 078501.CrossRefGoogle ScholarPubMed
Zhong, J.-Q., Stevens, R.J.A.M., Clercx, H.J.H., Verzicco, R., Lohse, D. & Ahlers, G. 2009 Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 102 (4), 044502.Google ScholarPubMed