Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T07:46:05.911Z Has data issue: false hasContentIssue false

Sample dispersion in isotachophoresis

Published online by Cambridge University Press:  12 May 2011

G. GARCIA-SCHWARZ
Affiliation:
Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
M. BERCOVICI
Affiliation:
Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA
L. A. MARSHALL
Affiliation:
Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
J. G. SANTIAGO*
Affiliation:
Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
*
Email address for correspondence: [email protected]

Abstract

We present an analytical, numerical and experimental study of advective dispersion in isotachophoresis (ITP). We analyse the dynamics of the concentration field of a focused analyte in peak mode ITP. The analyte distribution is subject to electromigration, diffusion and advective dispersion. Advective dispersion results from strong internal pressure gradients caused by non-uniform electro-osmotic flow (EOF). Analyte dispersion strongly affects the sensitivity and resolution of ITP-based assays. We perform axisymmetric time-dependent numerical simulations of fluid flow, diffusion and electromigration. We find that analyte properties contribute greatly to dispersion in ITP. Analytes with mobility values near those of the trailing (TE) or leading electrolyte (LE) show greater penetration into the TE or LE, respectively. Local pressure gradients in the TE and LE then locally disperse these zones of analyte penetration. Based on these observations, we develop a one-dimensional analytical model of the focused sample zone. We treat the LE, TE and LE–TE interface regions separately and, in each, assume a local Taylor–Aris-type effective dispersion coefficient. We also performed well-controlled experiments in circular capillaries, which we use to validate our simulations and analytical model. Our model allows for fast and accurate prediction of the area-averaged sample distribution based on known parameters including species mobilities, EO mobility, applied current density and channel dimensions. This model elucidates the fundamental mechanisms underlying analyte advective dispersion in ITP and can be used to optimize detector placement in detection-based assays.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alberty, R. A. 1950 Moving boundary systems formed by weak electrolytes. Theory of simple systems formed by weak acids and bases. J. Am. Chem. Soc. 72 (6), 23612367.CrossRefGoogle Scholar
Anderson, J. L. & Idol, W. K. 1985 Electroosmosis through pores with nonuniformly charged walls. Chem. Engng Commun. 38 (3), 93.Google Scholar
Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A 235 (1200), 6777.Google Scholar
Bahga, S. S., Bercovici, M. & Santiago, J. G. 2010 Ionic strength effects on electrophoretic focusing and separations. Electrophoresis 31 (5), 910919.CrossRefGoogle ScholarPubMed
Bharadwaj, R., Huber, D. E, Khurana, T. & Santiago, J. G. 2008 Taylor dispersion in sample preconcentration methods. In Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques, pp. 10851120. CRC Press.Google Scholar
Chen, C.-H., Lin, H., Lele, S. K. & Santiago, J. G. 2005 Convective and absolute electrokinetic instability with conductivity gradients. J. Fluid Mech. 524, 263303.CrossRefGoogle Scholar
Everaerts, F. M., Beckers, J. L. & Verheggen, T. P. E. M. 1976 Isotachophoresis: Theory, Instrumentation, and Applications. Elsevier.Google Scholar
Gebauer, P., Malá, Z. & Boček, P. 2007 Recent progress in capillary ITP. Electrophoresis 28 (1–2), 2632.CrossRefGoogle ScholarPubMed
Ghosal, S. 2002 Band broadening in a microcapillary with a stepwise change in the zeta-potential. Anal. Chem. 74 (16), 41984203.CrossRefGoogle Scholar
Herr, A. E., Molho, J. I., Santiago, J. G., Mungal, M. G., Kenny, T. W. & Garguilo, M. G. 2000 Electroosmotic capillary flow with nonuniform zeta potential. Anal. Chem. 72 (5), 10531057.CrossRefGoogle ScholarPubMed
Hirokawa, T., Nishino, M., Aoki, N., Kiso, Y., Sawamoto, Y., Yagi, T. & Akiyama, J. I 1983 Table of isotachophoretic indices. I. Simulated qualitative and quantitative indices of 287 anionic substances in the range pH 3–10. J. Chromatogr. A 271 (2), D1D106.CrossRefGoogle Scholar
Jaroš, M., Hruška, V., Štědrỳ, M., Zusková, I. & Gaš, B. 2004 Eigenmobilities in background electrolytes for capillary zone electrophoresis. IV. Computer program peakmaster. Electrophoresis 25 (18–19), 30803085.CrossRefGoogle ScholarPubMed
Jovin, T. M. 1973 Multiphasic zone electrophoresis. I. Steady-state moving-boundary systems formed by different electrolyte combinations. Biochemistry 12 (5), 871879.CrossRefGoogle ScholarPubMed
Khurana, T. K. & Santiago, J. G. 2008 Sample zone dynamics in peak mode isotachophoresis. Anal. Chem. 80 (16), 63006307.CrossRefGoogle ScholarPubMed
Khurana, T. K & Santiago, J. G. 2009 Effects of carbon dioxide on peak mode isotachophoresis: simultaneous preconcentration and separation. Lab Chip 9 (10), 13771384.CrossRefGoogle ScholarPubMed
Kirby, B. J. & Hasselbrink, E. F. 2004 Zeta potential of microfluidic substrates. 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25 (2), 187202.CrossRefGoogle ScholarPubMed
Kohlrausch, F. 1897 Über concentrations-verschiebungen durch electrolyse im inneren von lösungen und lösungsgemischen. Ann. Phys. 298 (10), 209239.CrossRefGoogle Scholar
Konstantinov, B. P. & Oshurkova, O. V. 1966 Instrument for analyzing electrolyte solutions by ionic mobilities. Sov. Phys.-Tech. Phys. 11 (5), 693704.Google Scholar
Lin, H., Storey, B. D., Oddy, M. H., Chen, C.-H. & Santiago, J. G. 2004 Instability of electrokinetic microchannel flows with conductivity gradients. Phys. Fluids 16 (6), 1922.CrossRefGoogle Scholar
MacInnes, D. A. & Longsworth, L. G. 1932 Transference numbers by the method of moving boundaries. Chem. Rev. 11 (2), 171230.CrossRefGoogle Scholar
Martin, A. J. P. & Everaerts, F. M. 1970 Displacement electrophoresis. Proc. R. Soc. Lond. A 316 (1527), 493514.Google Scholar
Martin, M. M. & Lindqvist, L. 1975 The pH dependence of fluorescein fluorescence. J. Lumin. 10 (6), 381390.CrossRefGoogle Scholar
Mchedlov-Petrossyan, N. O., Kukhtik, V. I. & Alekseeva, V. I. 1994 Ionization and tautomerism of fluorescein, rhodamine b, n, n-diethylrhodol and related dyes in mixed and nonaqueous solvents. Dyes Pigment. 24 (1), 1135.Google Scholar
Persat, A. & Santiago, J. G. 2009 Electrokinetic control of sample splitting at a channel bifurcation using isotachophoresis. New J. Phys. 11 (7), 075026.CrossRefGoogle Scholar
Probstein, R. F. 1994 Physicochemical Hydrodynamics: An Introduction. Wiley-Interscience.CrossRefGoogle Scholar
Santiago, J. G. 2001 Electroosmotic flows in microchannels with finite inertial and pressure forces. Anal. Chem. 73 (10), 23532365.CrossRefGoogle ScholarPubMed
Santos, J. J. & Storey, B. D. 2008 Instability of electro-osmotic channel flow with streamwise conductivity gradients. Phys. Rev. E 78 (4), 46316.CrossRefGoogle ScholarPubMed
Saville, D. A. 1990 The effects of electroosmosis on the structure of isotachophoresis boundaries. Electrophoresis 11 (11), 899902.CrossRefGoogle ScholarPubMed
Saville, D. A. & Palusinski, O. A. 1986 Theory of electrophoretic separations. Part I. Formulation of a mathematical model. AIChE J. 32 (2), 207214.Google Scholar
Schönfeld, F., Goet, G., Baier, T. & Hardt, S. 2009 Transition zone dynamics in combined isotachophoretic and electro-osmotic transport. Phys. Fluids 21 (9), 092002.Google Scholar
Shakalisava, Y., Poitevin, M., Viovy, J. L. & Descroix, S. 2009 Versatile method for electroosmotic flow measurements in microchip electrophoresis. J. Chromatogr. A 1216 (6), 10301033.CrossRefGoogle ScholarPubMed
Sounart, T. L. & Baygents, J. C. 2007 Lubrication theory for electro-osmotic flow in a non-uniform electrolyte. J. Fluid Mech. 576, 139172.Google Scholar
Taylor, G. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219 (1137), 186203.Google Scholar
Supplementary material: PDF

Garcia-Schwarz et al. supplementary material

Appendix

Download Garcia-Schwarz et al. supplementary material(PDF)
PDF 2.6 MB