Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T06:49:36.319Z Has data issue: false hasContentIssue false

Roughness effect in an initially laminar channel flow

Published online by Cambridge University Press:  08 April 2020

N. N. Anika
Affiliation:
School of Mechanical Engineering, The University of Newcastle, NSW 2308, Australia
L. Djenidi*
Affiliation:
School of Mechanical Engineering, The University of Newcastle, NSW 2308, Australia
S. Tardu
Affiliation:
LEGI, Université Grenoble Alpes Domaine Universitaire CS 40700, 38058, Grenoble CEDEX 9, France
*
Email address for correspondence: [email protected].

Abstract

The possibility of generating and maintaining turbulence in an initially laminar channel flow is investigated for two Reynolds numbers $Re_{b}(=u_{b}h/\unicode[STIX]{x1D708})=880$ and 2100 (based on bulk velocity, $u_{b}$ and half-height of the channel, $h$). The study is carried out through a direct numerical simulation based on the lattice Boltzmann method (LBM). The channel consists of two parallel walls separated by a distance $2h$ where the roughness elements are mounted on both walls. It was observed that when the transverse square bars span half the width of the channel and are mounted in a ‘staggered’ formation, the flow becomes fully turbulent with strong similarities to fully rough wall turbulent channel flows at much higher Reynolds number, as reported in the literature. For example, the rough wall mean velocity profile exhibits a significant downward shift when compared to the smooth wall one. Also, the turbulent kinetic energy budget is similar to its counterpart in rough wall turbulent channel flows at much higher Reynolds numbers than the present ones. It is further shown that the present velocity spectra compared very well with that obtained in a rough wall turbulent boundary layer. Finally, some elements of the possible physical mechanism allowing the generation, growth and sustainability of turbulence are proposed.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anika, N. N., Djenidi, L. & Tardu, S. 2018 Bypass transition mechanism in a rough wall channel flow. Phys. Rev. Fluids 3 (8), 084604.Google Scholar
Antonia, R. A., Djenidi, L. & Danaila, L. 2014 Collapse of the turbulent dissipation range on Kolmogorov scales. Phys. Fluids 26, 045105.CrossRefGoogle Scholar
Bakken, O. M., Krogstad, P.-Å., Ashrafian, A. & Andersson, H. I. 2005 Reynolds number effects in the outer layer of the turbulent flow in a channel with rough walls. Phys. Fluids 17 (6), 065101.CrossRefGoogle Scholar
Bernsdorf, J., Zeiser, T., Brenner, G. & Durst, F. 1998 Simulation of a 2D channel flow around a square obstacle with lattice-Boltzmann (BGK) automata. Intl J. Mod. Phys. C 9 (08), 11291141.CrossRefGoogle Scholar
Brooke, J. W. & Hanratty, T. J. 1993 Origin of turbulence-producing eddies in a channel flow. Phys. Fluids A 5 (4), 10111022.CrossRefGoogle Scholar
Burattini, P., Leonardi, S., Orlandi, P. & Antonia, R. A. 2008 Comparison between experiments and direct numerical simulations in a channel flow with roughness on one wall. J. Fluid Mech. 600, 403426.CrossRefGoogle Scholar
Chen, S. & Doolen, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30 (1), 329364.CrossRefGoogle Scholar
Djenidi, L. 2006 Lattice-Boltzmann simulation of grid-generated turbulence. J. Fluid Mech. 552, 1335.CrossRefGoogle Scholar
Djenidi, L. & Moghtaderi, B. 2006 Numerical investigation of laminar mixing in a coaxial microreactor. J. Fluid Mech. 568, 223242.CrossRefGoogle Scholar
Djenidi, L., Tardu, S. F., Antonia, R. A. & Danaila, L. 2014 Breakdown of Kolmogorov’s first similarity hypothesis in grid turbulence. J. Turbul. 15, 596610.CrossRefGoogle Scholar
Frisch, U., Pomeau, Y. & Hasslacher, B. 1986 Lattice-gas automata for the Navier–Stokes equation. Phys. Rev. Lett. 56 (14), 15051508.CrossRefGoogle ScholarPubMed
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.CrossRefGoogle Scholar
Henningson, D. S. & Kim, J. 1991 On turbulent spots in plane Poiseuille flow. J. Fluid Mech. 228, 183205.Google Scholar
Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to Re 𝜏 = 2003. Phys. Fluids 18 (1), 011702.Google Scholar
Ikeda, T. & Durbin, P. A. 2007 Direct simulations of a rough-wall channel flow. J. Fluid Mech. 571, 235263.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Jiménez, J. & Orlandi, P. 1993 The rollup of a vortex layer near a wall. J. Fluid Mech. 248, 297313.CrossRefGoogle Scholar
Kamruzzaman, M., Djenidi, L., Antonia, R. A. & Talluru, K. M. 2015 Scale-by-scale energy budget in a turbulent boundary layer over a rough wall. Intl J. Heat Fluid Flow 55, 28.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 30, 301305; (see also Proc. R. Soc. Lond. A (1991), 434, 9–13).Google Scholar
Krogstad, P.-Å., Andersson, H. I., Bakken, O. M. & Ashrafian, A. 2005 An experimental and numerical study of channel flow with rough walls. J. Fluid Mech. 530, 327352.CrossRefGoogle Scholar
Lammers, P., Jovanović, J. & Delgado, A. 2011 Persistence of turbulent flow in microchannels at very low Reynolds numbers. Microfluid. Nanofluid. 11 (2), 129136.CrossRefGoogle Scholar
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98 (2), 243251.CrossRefGoogle Scholar
Landahl, M. T. 1990 On sublayer streaks. J. Fluid Mech. 212, 593614.CrossRefGoogle Scholar
Leonardi, S. & Castro, I. P. 2010 Channel flow over large cube roughness: a direct numerical simulation study. J. Fluid Mech. 651, 519539.CrossRefGoogle Scholar
Leonardi, S., Orlandi, P., Djenidi, L. & Antonia, R. A. 2006 Guidelines for modeling a 2D rough wall channel flow. Flow Turbul. Combust. 77 (1–4), 4157.CrossRefGoogle Scholar
Leonardi, S., Orlandi, P., Smalley, R. J., Djenidi, L. & Antonia, R. A. 2003 Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech. 491, 229238.CrossRefGoogle Scholar
Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct numerical simulation of turbulent channel flow up to Re 𝜏 = 590. Phys. Fluids 11 (4), 943945.CrossRefGoogle Scholar
New, T. H., Lim, T. T. & Luo, S. C. 2006 Effects of jet velocity profiles on a round jet in cross-flow. Exp. Fluids 40 (6), 859875.CrossRefGoogle Scholar
Obot, N. T. 2002 Toward a better understanding of friction and heat/mass transfer in microchannels – a literature review. Microscale Therm. Engng 6 (3), 155173.CrossRefGoogle Scholar
Ottino, J. M. 1990 Mixing, chaotic advection, and turbulence. Annu. Rev. Fluid Mech. 22 (1), 207254.CrossRefGoogle Scholar
Schmid, P. J. & Henningson, D. S. 2012 Stability and Transition in Shear Flows, Applied Mathematics Sciences, vol. 142. Springer.Google Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.CrossRefGoogle Scholar
Succi, S. 2001 The Lattice-Boltzmann Equation. Oxford University Press.Google Scholar
Tardu, S. 2013 Statistical Approach to Wall Turbulence. John Wiley and Sons.Google Scholar
Tardu, S., Nacereddine, R. & Doche, O. 2008 An interactive bypass transition mechanism in wall-bounded flows. J. Fluid Mech. 615, 345369.CrossRefGoogle Scholar
Tuckerman, L. S., Kreilos, T., Schrobsdorff, H., Schneider, T. M. & Gibson, J. F. 2014 Turbulent-laminar patterns in plane Poiseuille flow. Phys. Fluids 26 (11), 114103.CrossRefGoogle Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.CrossRefGoogle Scholar