Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-18T22:58:16.722Z Has data issue: false hasContentIssue false

The role of acoustics in flame/vortex interactions

Published online by Cambridge University Press:  26 April 2006

T. L. Jackson
Affiliation:
Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, USA
Michéle G. Macaraeg
Affiliation:
NASA Langley Research Center, Hampton, VA 23681-0001, USA
M. Y. Hussaini
Affiliation:
Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA 23681-0001, USA

Abstract

The role of acoustics in flame/vortex interactions is examined via asymptotic analysis and numerical simulation. The model consists of a one-step, irreversible Arrhenius reaction between initially unmixed species occupying adjacent half-planes which are allowed to mix and react by convection and diffusion in the presence of an acoustic field or a time-varying pressure field of small amplitude. The main emphasis is on the influence of the acoustics on the ignition time and flame structure as a function of vortex Reynolds number and initial temperature differences of the reactants.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buckmaster, J. 1992 Flame stability. In Major Research Topics in Combustion (ed. M. Y. Hussaini, A. Kumar & R. G. Voigt), pp. 103130. Springer.
Buckmaster, J. D. & Ludford, G. S. S. 1982 Theory of Laminar Flames. Cambridge University Press.
Buckmaster, J. D. & Matalon, M. 1988 Anomalous Lewis number effects in tribrachial flames. In Twenty-Second Symp. (Intl) on Combustion, pp. 15271535. The Combustion Institute.
Clarke, J. F. 1981 Propagation of gasdynamic disturbances in an explosive atmosphere. Prog. Astron. Aeron. 76, 382.Google Scholar
Clarke, J. F. 1985 Finite amplitude waves in combustion gases. In The Mathematics of Combustion (ed. J. D. Buckmaster), pp. 183245. SIAM.
Corcos, G. M. 1988 The role of cartoons in turbulence. In Perspectives in Fluid Mechanics (ed. D. Coles). Lecture Notes in Physics, vol. 320, pp. 4865. Springer.
Dold, J. W. 1989 Flame propagation in a nonuniform mixture: analysis of a slowly varying triple flame. Combust. Flame 76, 7188.Google Scholar
Goldstein, M. E. & Hultgren, L. 1989 Boundary layer receptivity to longwave freestream disturbances. Ann. Rev. Fluid Mech. 21, 137166.Google Scholar
Grosch, C. E. & Jackson, T. L. 1991 Ignition and structure of a laminar diffusion flame in a compressible mixing layer with finite rate chemistry. Phys. Fluids A 3, 30873097.Google Scholar
Hartley, L. J. & Dold, J. W. 1991 Flame propagation in a nonuniform mixture: analysis of a propagating triple-flame. Combust. Sci. Tech. 80, 2346.Google Scholar
Jackson, T. L. & Hussaini, M. Y. 1988 An asymptotic analysis of supersonic reacting mixing layers. Combust. Sci. Tech. 57, 129140.Google Scholar
Jackson, T. L., Hussaini, M. Y. & Ribner, H. S. 1993 Interaction of turbulence with a detonation wave. Phys. Fluids A 5, 745749.Google Scholar
Kapila, A. K. 1992 Role of acoustics in combustion instability. In Major Research Topics in Combustion (ed. M. Y. Hussaini, A. Kumar & R. G. Voigt), pp. 162178. Springer.
Kassoy, D. R., Kapila, A. K. & Stewart, D. S. 1989 Combust. Sci. Tech. 63, 3343.
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.
Laverdant, A. M. & Candel, S. M. 1988 A numerical analysis of a diffusion flame–vortex interaction. Combust. Sci. Tech. 60, 7996.Google Scholar
Ledder, G. & Kapila, A. K. 1991 The response of premixed flames to pressure perturbations. Combust. Sci. Tech. 76, 2144.Google Scholar
Lee, J. H. S. 1977 Initiation of gaseous detonation. Ann. Rev. Phys. Chem. 28, 75104.Google Scholar
Linan, A. & Crespo, A. 1976 An asymptotic analysis of unsteady diffusion flames for large activation energies. Combust. Sci. Tech. 14, 95117.Google Scholar
Macaraeg, M. G., Jackson, T. L. & Hussaini, M. Y. 1992 Ignition and structure of a laminar diffusion flame in the field of a vortex. Combust. Sci. Tech. 87, 363387.Google Scholar
Majda, A. 1984 Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer.
Marble, F. E. 1985 Growth of a diffusion flame in the field of a vortex. In Recent Advances in Aerospace Sciences (ed. C. Cassci), pp. 395413. Plenum.
Matkowsky, B. J. & Sivashinsky, G. I. 1979 An asymptotic derivation of two models in flame theory associated with the constant density approximation. SIAM J. Appl. Maths 37, 686699.Google Scholar
Mcintosh, A. C. 1986 Flame resonance and acoustics in the presence of heat loss. In Reacting Flows (ed. G. S. S. Ludford). Lectures in Applied Mathematics, vol. 24, pp. 269301. Springer.
Mcintosh, A. C. 1989 The interaction of high frequency low amplitude acoustic waves with premixed flames. In Non Linear Waves in Active Media (ed. J. Engelbrecht), pp. 218231. Springer.
Mcintosh, A. C. 1991 Pressure disturbances of different length scales interacting with conventional flames. Combust. Sci. Tech. 75, 287309.Google Scholar
Mcintosh, A. C. & Wilce, S. A. 1991 High frequency pressure wave interaction with premixed flames. Combust. Sci. Tech. 79, 141155.Google Scholar
Mckenzie, J. F. & Westphal, K. O. 1968 Interaction of linear waves with oblique shock waves. Phys. Fluids 11, 23502362.Google Scholar
Norton, O. P. 1983 The effects of a vortex field on flames with finite reaction rates. PhD thesis, California Institute of Technology.
Oran, E. S. & Gardner, J. H. 1985 Chemical–acoustic interactions in combustion systems. Prog. Energy Combust. Sci. 11, 253276.Google Scholar
Pearson, C. F. & Abernathy, F. H. 1984 Evolution of the flow field associated with a streamwise diffusing vortex. J. Fluid Mech. 146, 271283.Google Scholar
Peters, N. & Williams, F. A. 1988 Premixed combustion in a vortex. In Twenty-Second Symp. (Intl) on Combustion, pp. 495503. The Combustion Institute.
Rehm, R. G., Baum, H. R., Lozier, D. W. & Aronson, J. 1989 Diffusion-controlled reaction in a vortex field. Combust. Sci. Tech. 66, 293317.Google Scholar
Roberts, J. P. 1978 Amplification of an acoustic signal by a laminar premixed gaseous flame. Combust. Flame 33, 7983.Google Scholar
Shepherd, J. E. & Lee, J. H. S. 1992 On the transition from deflagration to detonation. In Major Research Topics in Combustion (ed. M. Y. Hussaini, A. Kumar & R. G. Voigt), pp. 439487. Springer.
Toong, T. Y., Arbeau, P., Garris, C. A. & Patureau, J. P. 1974 Acoustic–kinetic interactions in an irreversibly reacting medium. In Fifteenth Symp. (Intl) on Combustion. pp. 87100. The Combustion Institute.
Urtiew, R. & Oppenheim, A. K. 1966 Experimental observations of the transition to denotation in an explosive gas. Proc. R. Soc. Lond. A 295, 1328.Google Scholar
Van Harten, A., Kapila, A. K. & Matkowsky, B. J. 1984 Acoustic coupling of flames. SIAM J. Appl. Maths 44, pp. 982995.Google Scholar
Williams, F. A. 1985 Combustion Theory, 2nd edn. Benjamin/Cummings.
Zang, T. A., Hussaini, M. Y. & Bushnell, D. M. 1984 Numerical computations of turbulence amplification in shock–wave interactions. AIAA J. 22, 1321.Google Scholar