Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-18T21:29:03.834Z Has data issue: false hasContentIssue false

Relative dispersion of a scalar plume in a turbulent boundary layer

Published online by Cambridge University Press:  02 August 2010

Q. LIAO*
Affiliation:
Department of Civil Engineering and Mechanics, University of Wisconsin–Milwaukee, Milwaukee, WI 53211, USA
E. A. COWEN
Affiliation:
DeFrees Hydraulics Laboratory, School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
*
Email address for correspondence: [email protected]

Abstract

The relative dispersion of a scalar plume is examined experimentally. A passive fluorescent tracer is continuously released from a flush-bed mounted source into the turbulent boundary layer of a laboratory-generated open channel flow. A two-dimensional particle image velocimetry–laser-induced florescence (PIV–LIF) technique is applied to measure the instantaneous horizontal velocity and concentration fields. Measured results are used to investigate the relationship between the boundary-layer turbulence and the evolution of the distance-neighbour function, namely the probability density distribution of the separation distance between two marked fluid particles within a cloud of particles. Special attention is paid to the hypothesis that a diffusion equation can describe the evolution of the distance-neighbour function. The diffusion coefficient in such an equation, termed the ‘relative diffusivity’, is directly calculated based on the concentration distribution. The results indicate that the relative diffusivity statistically depends on particle separation lengths instead of the overall size of the plume. Measurements at all stages of the dispersing plume collapse onto a single curve and follow a 4/3 power law in the inertial subrange. The Richardson–Obukhov constant is estimated from the presented dataset. The relationship between the one-dimensional (1D) representation of the distance-neighbour function and its three-dimensional (3D) representation is discussed. An extended model for relative diffusivity beyond the inertial subrange is proposed based on the structure of the turbulent velocity field, and it agrees well with measurements. The experimental evidence implies that, while the diffusion of the distance-neighbour function is completely determined by the underlying turbulence, the overall growth rate of the plume is affected by both the turbulent flow and its actual concentration distribution.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atema, J. 1995 Chemical signals in the marine environment: dispersal, detection and temporal signal analysis. Proc. Natl Acad. Sci 92, 6266.CrossRefGoogle ScholarPubMed
Batchelor, G. K. 1952 Diffusion in a field of homogeneous turbulence. II. The relative motion of particles. Proc. Camb. Phil. Soc. 48, 345362.CrossRefGoogle Scholar
Berg, J., Lüthi, B., Mann, J. & Ott, S. 2006 Backwards and forwards relative dispersion in turbulent flow: an experimental investigation. Phys. Rev. E 74 (1), 016304.CrossRefGoogle ScholarPubMed
Biferale, L., Boffetta, G., Celani, A., Devenish, B. J., Lanotte, A. & Toschi, F. 2005 Lagrangian statistics of particle pairs in homogeneous isotropic turbulence. Phys. Fluids 17 (11), 115101.CrossRefGoogle Scholar
Borgas, M. S. & Sawford, B. L. 1994 A family of stochastic models for two-particle dispersion in isotropic homogeneous stationary turbulence. J. Fluid Mech. 279, 6999.CrossRefGoogle Scholar
Bourgoin, M., Ouellette, N. T., Xu, H., Berg, J. & Bodenschatz, E. 2006 The role of pair dispersion in turbulent flow. Science 311, 835838.CrossRefGoogle ScholarPubMed
Cowen, E. A., Chang, K. A. & Liao, Q. 2001 A single-camera coupled PTV-LIF technique. Exp. Fluids 31, 6373.CrossRefGoogle Scholar
Cowen, E. A. & Monismith, S. G. 1997 A hybrid digital particle tracking velocimetry technique. Exp. Fluids 22, 199211.CrossRefGoogle Scholar
Csanady, G. T. 1963 Turbulent diffusion in lake huron. J. Fluid Mech. 17, 360384.CrossRefGoogle Scholar
Doron, P., Bertuccioli, L., Katz, J. & Osborn, T. R. 2001 Turbulence characteristics and dissipation estimates in the coastal ocean bottom boundary layer from PIV data. J. Phys. Oceanogr. 31 (8), 21082134.2.0.CO;2>CrossRefGoogle Scholar
Durbin, P. A. 1980 A stochastic model of two-particle dispersion and concentration fluctuations in homogeneous turbulence. J. Fluid Mech. 100, 279302.CrossRefGoogle Scholar
Fong, D. & Stacey, M. 2003 Horizontal dispersion of a near-bed coastal plume. J. Fluid Mech. 489, 239267.CrossRefGoogle Scholar
Franzese, P. & Cassiani, M. 2007 A statistical theory of turbulent relative dispersion. J. Fluid Mech. 571, 391417.CrossRefGoogle Scholar
George, W. K. & Hussein, H. J. 1991 Locally axisymmetric turbulence. J. Fluid Mech. 233, 123.CrossRefGoogle Scholar
Gifford, F. J. 1957 Relative atmospheric diffusion of smoke puffs. J. Meteorol. 14, 410414.2.0.CO;2>CrossRefGoogle Scholar
Ishihara, T. & Kaneda, Y. 2002 Relative diffusion of a pair of fluid particles in the inertial subrange of turbulence. Phys. Fluids 14 (11), L69L72.CrossRefGoogle Scholar
Karcz, I. 1966 Secondary currents and the configuration of a natural stream bed. J. Geophys. Res. 71, 31093116.CrossRefGoogle Scholar
Koehl, M. A. R., Koseff, J. R., Crimaldi, J. P., McCay, M. G., Cooper, T., Wiley, M. B. & Moore, P. A. 2001 Lobster sniffing: antennule design and hydrodynamic filtering of information in an odor plume. Science 294, 19481951.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 1921.Google Scholar
Liao, Q. & Cowen, E. A. 2005 An efficient anti-aliasing spectral continuous window shifting technique for PIV. Exp. Fluids 38 (2), 197208.CrossRefGoogle Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, Vol. 2. MIT Press.Google Scholar
Murlis, J., Elkinton, J. S. & Carde, R. T. 1992 Odor plumes and how insects use them. Annu. Rev. Entomol. 37, 505532.CrossRefGoogle Scholar
Obukhov, A. M. 1941 Spectral energy distribution in turbulent flow. Izv. Akad. Nauk SSSR Ser. Geogr. Geofiz. 5, 452566.Google Scholar
Okubo, A. 1971 Oceanic diffusion diagrams. Deep-Sea Res. 18, 789802.Google Scholar
Ott, S. & Mann, J. 2000 An experimental investigation of the relative diffusion of particle pairs in three-dimensional turbulent flow. J. Fluid Mech. 422, 207223.CrossRefGoogle Scholar
Ouellette, N. T., Xu, H., Bourgoin, M. & Bodenschatz, E. 2006 An experimental study of turbulent relative dispersion models. New J. Phys. 8, Art. No. 109.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Richardson, L. F. 1926 Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. A (110), 709–727.Google Scholar
Saddoughi, S. G. & Veeravalli, S. V. 1994 Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech. 268, 333372.CrossRefGoogle Scholar
Salazar, J. P. L. C. & Collins, L. R. 2009 Two-particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech. 41, 405432.CrossRefGoogle Scholar
Sawford, B. 2001 Turbulent relative dispersion. Annu. Rev. Fluid Mech 33, 289317.CrossRefGoogle Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary-layer up to R θ = 1410. J. Fluid Mech. 187, 6198.CrossRefGoogle Scholar
Stacey, M. T., Cowen, E. A., Powell, T. M., Dobbins, E., Monismith, S. G. & Koseff, J. R. 2000 Plume dispersion in a stratified near-coastal flow: measurements and modeling. Cont. Shelf Res. 20 (6), 637663.CrossRefGoogle Scholar
Stommel, H. 1949 Horizontal diffusion due to oceanic turbulence. J. Mar. Res. 8, 199225.Google Scholar
Sullivan, P. J. 1971 Some data on the distance-neighbour function for relative diffusion. J. Fluid Mech. 47, 601607.CrossRefGoogle Scholar
Thomson, D. J. 1990 A stochastic model for the motion of particle pairs in isotropic high-Reynolds-number turbulence, and its applications to the problem of concentration variance. J. Fluid Mech. 210, 113153.CrossRefGoogle Scholar
Vanoi, V. A. 1946 Transportation of suspended sediment by water. Trans. ASCE 111, 67133.Google Scholar
Yeung, P. K. & Borgas, M. S. 2004 Relative dispersion in isotropic turbulence. Part 1. Direct numerical simulations and Reynolds-number dependence. J. Fluid Mech. 503, 933–124.CrossRefGoogle Scholar
Zarruk, G. A. & Cowen, E. A. 2008 Simultaneous velocity and passive scalar concentration measurements in low Reynolds number neutrally buoyant turbulent round jets. Exp. Fluids 44 (6), 865872.CrossRefGoogle Scholar