Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-30T15:28:11.418Z Has data issue: false hasContentIssue false

Regimes during liquid drop impact on a liquid pool

Published online by Cambridge University Press:  10 March 2015

Bahni Ray
Affiliation:
Department of Mechanical Engineering, City College of City University of New York, New York, NY 10031, USA
Gautam Biswas*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
Ashutosh Sharma
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
*
Email address for correspondence: [email protected]

Abstract

Water drops falling on a deep pool can either coalesce to form a vortex ring or splash, depending on the impact conditions. The transition between coalescence and splashing proceeds via a number of intermediate steps, such as thick and thin jet formation and gas-bubble entrapment. We perform simulations to determine the conditions under which bubble entrapment and jet formation occur. A regime map is established for Weber numbers ranging from 50 to 300 and Froude numbers from 25 to 600. Vortex ring formation is seen for all of the regimes; it is greater for the coalescence regime and less in the case of the thin jet regime.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J., Christensen, K. T. & Liu, Z. C. 2000 Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids 29, 275290.CrossRefGoogle Scholar
Berberovic, E., van Hinsberg, N. P., Jakirlic, S., Roisman, I. V. & Tropea, C. 2009 Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. Phys. Rev. E 79, 036306,1–15.Google Scholar
Bisighini, A. & Cossali, G. E. 2010 Crater evolution after the impact of a drop onto a semi-infinite liquid target. Phys. Rev. E 82, 036319,1–11.Google Scholar
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100, 335354.Google Scholar
Chang, Y. C., Hou, T. Y., Merriman, B. & Osher, S. 1996 A level-set formulation of Eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124, 449464.Google Scholar
Chapman, D. S. & Critchlow, P. R. 1967 Formation of vortex rings from falling drops. J. Fluid Mech. 29, 177185.Google Scholar
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three dimensional flow fields. Phys. Fluids A2, 765777.Google Scholar
Cole, D. E.2007 Splashing morphology of liquid–liquid impacts. PhD thesis, James Cook Univeristy.Google Scholar
Cresswell, R. W. & Morton, B. R. 1995 Drop-formed vortex rings – the generation of vorticity. Phys. Fluids 7, 13631370.Google Scholar
Deng, Q., Anilkumar, A. V. & Wang, T. G. 2007 The role of viscosity and surface tension in bubble entrapment during drop impact onto a deep liquid pool. J. Fluid Mech. 578, 119138.Google Scholar
Dooley, B. S., Warncke, A. E., Gharib, M. & Tryggvason, G. 1997 Vortex ring generation due to the coalescence of a water drop at a free surface. Phys. Fluids 22, 369374.Google Scholar
Durst, F. 1996 Penetration length and diameter development of vortex rings generated by impacting water drops. Exp. Fluids 21, 110117.Google Scholar
Elmore, P. A., Pumphrey, H. C. & Crum, L. A.1989 Further studies of the underwater noise produced by rainfall. PhD thesis, University of Mississippi.Google Scholar
Engel, O. G. 1966 Crater depth in fluid impacts. J. Appl. Phys. 37, 17981808.Google Scholar
Engel, O. G. 1967 Initial pressure, initial flow velocity, and the time dependence of crater depth in fluid impacts. J. Appl. Phys. 38, 39353940.Google Scholar
Esmailizadeh, L. & Mesler, R. 1986 Bubble entrainment with drops. J. Colloid Interface Sci. 110, 561574.Google Scholar
Franz, J. 1959 Splashes as sources of sound in liquids. J. Acoust. Soc. Am. 31, 10801096.Google Scholar
Hsiao, M., Lichter, S. & Quintero, L. G. 1988 The critical Weber number for vortex and jet formation for drops impinging on a liquid pool. Phys. Fluids 31, 35603562.Google Scholar
Liow, J. L. 2001 Splash formation by spherical drops. J. Fluid Mech. 427, 73105.Google Scholar
Longuet-Higgins, M. S. 1990 An analytic model of sound production by rain-drops. J. Fluid Mech. 214, 395410.Google Scholar
Medwin, H., Nystuen, J. A., Jacobus, P. W., Ostwald, L. H. & Snyder, D. E. 1992 The anatomy of underwater rain noise. J. Acoust. Soc. Am. 92, 16131623.CrossRefGoogle Scholar
Morton, D., Rudman, M. & Liow, J. L. 2000 An investigation of the flow regimes resulting from splashing drops. Phys. Fluids 12, 747763.Google Scholar
Nystuen, J. A. 1986 Rainfall measurements using underwater ambient noise. J. Acoust. Soc. Am. 79, 972982.Google Scholar
Oguz, H. N. & Prosperetti, A. 1990 Bubble entrainment by the impact of drops on liquid surfaces. J. Fluid Mech. 219, 143179.Google Scholar
Oguz, H. N. & Prosperetti, A. 1991 Numerical calculations of the underwater noise of rain. J. Fluid Mech. 228, 417442.Google Scholar
Peck, B. & Sigurdson, L. 1994 The three-dimensional vortex structure of an impacting water drop. Phys. Fluids 6 (2), 564576.Google Scholar
Prosperetti, A., Pumphrey, H. C. & Crum, L. A. 1989 The underwater noise of rain. J. Geophys. Res. 94, 32553259.Google Scholar
Pumphrey, H. C., Crum, L. A. & Bjørnø, L. 1989 Underwater sound produced by individual drop impacts and rainfall. J. Acoust. Soc. Am. 85, 15181526.Google Scholar
Pumphrey, H. C. & Elmore, P. A. 1990 The entrainment of bubbles by drop impacts. J. Fluid Mech. 220, 539567.Google Scholar
Ray, B., Biswas, G. & Sharma, A. 2010 Generation of secondary droplets in coalescence of a drop at a liquid/liquid interface. J. Fluid Mech. 655, 72104.Google Scholar
Ray, B., Biswas, G. & Sharma, A. 2012 Bubble pinch-off and scaling during liquid drop impact on liquid pool. Phys. Fluids 24, 080108,1–11.Google Scholar
Rein, M. 1996 The transitional regime between coalescing and splashing drops. J. Fluid Mech. 306, 145165.Google Scholar
Rodriguez, F. & Mesler, R. 1988 The penetration of drop-formed vortex rings into pools of liquid. J. Colloid Interface Sci. 121 (1), 121129.Google Scholar
Santini, M., Fest-Santini, S. & Cossali, G. E. 2013 LDV characterization and visualization of the liquid velocity field underneath an impacting drop in isothermal conditions. Exp. Fluids 54, 15931608.Google Scholar
Shankar, P. N. & Kumar, M. 1995 Vortex rings generated by drops just coalescing with a pool. Phys. Fluids 7 (4), 737746.Google Scholar
Sigler, J. & Mesler, R. 1989 The behavior of the gas film formed upon drop impact with a liquid surface. J. Colloid Interface Sci. 134, 459474.Google Scholar
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.Google Scholar
Thoroddsen, S. T., Thoraval, M. J., Takehara, K. & Etoh, T. G. 2012 Micro-bubble morphologies following drop impacts onto a pool surface. J. Fluid Mech. 708, 469479.Google Scholar
Tuan, T., de Maleprade, H., Sun, C. & Lohse, D. 2013 Air entrainment during impact of droplets on liquid surfaces. J. Fluid Mech. 726, R3,1–11.Google Scholar
Zhou, J., Adrian, R. J. & Balachandar, S. 1996 Autogeneration of near-wall vortical structures in channel. Phys. Fluids 8, 288290.Google Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanism for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353359.Google Scholar