Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T16:55:21.852Z Has data issue: false hasContentIssue false

The reflexion and diffraction of shock waves

Published online by Cambridge University Press:  28 March 2006

D. C. Pack
Affiliation:
Department of Mathematics, The Royal College of Science and Technology, Glasgow

Abstract

When I was first asked to give a general lecture to the 5th British Theoretical Mechanics Colloquium (held at Liverpool University, 2–5 April 1963), I put up the title ‘Shock Waves’, thinking that I might run over a wide field of present-day research, pointing out some of the unanswered problems. In the intervening months, however, I came across the new book by Dr Bradley (1962) of Liverpool University, The Physics and Chemistry of Shock Waves, and as recently as last November there appeared a summarizing article by Pain bt Rogers (1962) of London University in Reports on Progress in Physics. The first of these deals in great detail with the modern physical and chemical aspects of the subject—with real gas effects and experimental techniques-and the second summarizes the general classical properties and gives an extended account of recent work, for example, on real gas effects and on magnetohydrodynamics. I also bore in mind that magnetogasdynamics received a majestic treatment at the 4th Colloquium from Dr Shercliff. In the end, then, I decided to confine my remarks to one particular problem, namely the reflexion and diffraction of shock waves, and to concentrate mainly on developments during the past ten years. This paper is the text of the lecture.

Type
Research Article
Copyright
© 1964 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablow, C. M. 1960 Quart. Appl. Math. 18, 15.
Bargmann, V. 1945 O.S.R.D. Rep. no. 5171.
Becker, E. 1961 Rep. Aero. Sci. 1, 104.
Bezhanov, K. A. 1962 U.S.S.R. Computing Math. Math. Phys. 1, 142.
Bleakney, W. & Taub, A. H. 1949 Rev. Mod. Phys. 21, 584.
Bleakney, W., White, D. R. & Griffiths, W. C. 1950 J. Appl. Mech. 17, 439.
Bradley, J. N. 1962 Shock Waves in Chemistry and Physics. London: Methuen.
Bryson, A. E. & Gross, R. W. F. 1961 J. Fluid Mech. 10, 1.
Cabannes, H. & Stael, C. 1961 J. Fluid Mech. 10, 289.
Chisnell, R. F. 1957 J. Fluid Mech. 2, 286.
Clutterham, D. R. & Taub, A. H. 1956 Proc. 6th Symp. in Appl. Math., p. 45. American Mathematical Society, New York.
Courant, R. & Friedrichs, K. O. 1948 Supersonic Flow and Shock Waves. New York: Interscience.
Fletcher, C. H., Taub, A. H. & Bleakney, W. 1951 Rev. Mod. Phys. 23, 271.
Goldsworthy, F. A. 1959 J. Fluid Mech. 5, 164.
Guderley, K. G. 1962 Theory of Transonic Flow. Oxford: Pergamon Press.
Hartunian, R. A. 1961 Phys. Fluids, 4, 1059.
Holder, D. W. & Schultz, D. L. 1960 A.R.C. Current Paper, no. 22152.
Jahn, R. G. 1956 J. Fluid Mech. 1, 457.
Jahn, R. G. 1957 J. Fluid Mech. 2, 33.
Jones, D. M., Martin, P. M. E. & Thornhill, C. K. 1951 Proc. Roy. Soc. A, 209, 238.
Lean, G. H. 1943 Rep. Aero. Res. Council, no. 7495.
Lean, G. H. 1946 Rep. Aero. Res. Council, no. 10629.
Lighthill, M. J. 1949a Proc. Roy. Soc. A, 198, 454.
Lighthill, M. J. 1949b Phil. Mag. (7) 11, 1179.
Lighthill, M. J. 1950 Proc. Roy. Soc. A, 200, 554.
Lighthill, M. J. 1953 Proc. Roy. Soc. A, 217, 344.
Lighthill, M. J. 1956 Viscosity effects in sound waves of finite amplitude. Surveys in Mechanics, G. I. Taylor 70th Anniversary Volume, ed. G. K. Batchelor and R. M. Davies. Cambridge University Press.
Ludloff, H. F. 1953 On aerodynamics of blasts. Adv. Appl. Mech. 3. New York: Academic Press.
Ludloff, H. F. & Friedman, M. B. 1955 J. Aero. Sci. 22, 27.
Mark, H. 1958 NACA Tech. Mem. no. 1418.
Mirels, H. 1955 NACA Tech. Note, no. 3401.
Mirels, H. & Hamman, J. 1962 Phys. Fluids, 5, 91.
Pack, D. C. 1957a Phil. Mag. (8), 2, 182.
Pack, D. C. 1957b Phil. Mag. (8), 2, 189.
Pain, H. J. & Rogers, E. W. E. 1962 Rep. Prog. Phys. 25, 287.
Paterson, S. 1948 Proc. Phys. Soc. 61, 119.
Polachek, H. & Seeger, R. J. 1949 Proc. 1st Symp. Appl. Math., p. 119. American Mathematical Society, New York.
Polachek, H. & Seeger, R. J. 1951 Phys. Rev. 84, 922.
Rudinger, G. 1961 Phys. Fluids, 4, 1463.
Sichel, M. 1961 A study of the leading edge of a shock induced boundary layer. Princeton University, Dep. Aero. Engng, Rep. no. 540.Google Scholar
Sichel, M. 1962 Phys. Fluids, 5, 1168.
Smith, L. G. 1945 O.S.R.D. Report, no. 6271.
Smith, W. R. 1959 Phys. Fluids, 2, 533.
Smith, W. R. 1962 Phys. Fluids, 5, 593.
Smyrl, J. L. 1963 J. Fluid Mech. 15, 223.
Sternberg, J. 1959 Phys. Fluids, 2, 179.
Strehlow, R. A. & Cohen, A. 1962 Phys. Fluids, 5, 97.
Taub, A. H. 1947 Phys. Rev. 72, 51.
Thornhill, C. K. 1954 Proc. Int. Congress of Mathematicians, Amsterdam, 2, 384.
Ting, L. & Ludloff, H. F. 1952 J. Aero. Sci. 19, 317.
Warner, F. J. 1962 Proc. 9th Int. Symp. on Combustion. Cornell University, U.S.A.
Whitham, G. B. 1950 Proc. Roy. Soc. A, 203, 571.
Whitham, G. B. 1952 Commun. Pure Appl. Math. 5, 301.
Whitham, G. B. 1956 J. Fluid Mech. 1, 290.
Whitham, G. B. 1957 J. Fluid Mech. 2, 145.
Whitham, G. B. 1959 J. Fluid Mech. 5, 369.
Woods, B. A. 1962 R.A.E. Tech. Note Aero. no. 2848.