Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T11:33:11.428Z Has data issue: false hasContentIssue false

Reduced kinetic model of polyatomic gases

Published online by Cambridge University Press:  12 May 2023

Praveen Kumar Kolluru
Affiliation:
Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
Mohammad Atif
Affiliation:
Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
Santosh Ansumali*
Affiliation:
Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
*
Email address for correspondence: [email protected]

Abstract

Kinetic models of polyatomic gas typically account for the internal degrees of freedom at the level of the two-particle distribution function. However, close to the hydrodynamic limit, the internal (rotational) degrees of freedom tend to be well represented just by rotational kinetic energy density. We account for the rotational energy by augmenting the ellipsoidal statistical Bhatnagar–Gross–Krook (ES–BGK) model, an extension of the BGK model, at the level of the single-particle distribution function with an advection–diffusion–relaxation equation for the rotational energy. This reduced model respects the $H$ theorem and recovers the compressible hydrodynamics for polyatomic gases as its macroscopic limit. As required for a polyatomic gas model, this extension of the ES–BGK model not only has the correct specific heat ratio but also allows for three independent tunable transport coefficients: thermal conductivity, shear viscosity and bulk viscosity. We illustrate the effectiveness of the model via a lattice Boltzmann method implementation.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I.A. 1965 Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, vol. 55. Courier Corporation.Google Scholar
Agrawal, S., Singh, S.K. & Ansumali, S. 2020 Fokker–Planck model for binary mixtures. J. Fluid Mech. 899, A25.CrossRefGoogle Scholar
Andries, P., Le Tallec, P., Perlat, J.-P. & Perthame, B. 2000 The Gaussian–BGK model of Boltzmann equation with small Prandtl number. Eur. J. Mech. (B/Fluids) 19 (6), 813830.CrossRefGoogle Scholar
Ansumali, S., Arcidiacono, S., Chikatamarla, S.S., Prasianakis, N.I., Gorban, A.N. & Karlin, I.V. 2007 a Quasi-equilibrium lattice Boltzmann method. Eur. Phys. J. B 56 (2), 135139.CrossRefGoogle Scholar
Ansumali, S., Karlin, I.V., Arcidiacono, S., Abbas, A. & Prasianakis, N.I. 2007 b Hydrodynamics beyond Navier–Stokes: exact solution to the lattice Boltzmann hierarchy. Phys. Rev. Lett. 98 (12), 124502.CrossRefGoogle Scholar
Ansumali, S. & Karlin, I.V. 2002 Kinetic boundary conditions in the lattice Boltzmann method. Phys. Rev. E 66 (2), 026311.CrossRefGoogle ScholarPubMed
Ansumali, S., Karlin, I.V. & Öttinger, H.C. 2005 Thermodynamic theory of incompressible hydrodynamics. Phys. Rev. Lett. 94 (8), 080602.CrossRefGoogle ScholarPubMed
Arima, T., Taniguchi, S., Ruggeri, T. & Sugiyama, M. 2012 Extended thermodynamics of dense gases. Contin. Mech. Thermodyn. 24 (4–6), 271292.CrossRefGoogle Scholar
Atif, M., Kolluru, P.K. & Ansumali, S. 2022 Essentially entropic lattice Boltzmann model: theory and simulations. Phys. Rev. E 106, 055307.CrossRefGoogle ScholarPubMed
Atif, M., Kolluru, P.K., Thantanapally, C. & Ansumali, S. 2017 Essentially entropic lattice Boltzmann model. Phys. Rev. Lett. 119, 240602.CrossRefGoogle ScholarPubMed
Atif, M., Namburi, M. & Ansumali, S. 2018 Higher-order lattice Boltzmann model for thermohydrodynamics. Phys. Rev. E 98, 053311.CrossRefGoogle Scholar
von Backstrom, T.W. 2008 The effect of specific heat ratio on the performance of compressible flow turbo-machines. In ASME Turbo Expo 2008, pp. 2111–2117. ASME.CrossRefGoogle Scholar
Bernard, F., Iollo, A. & Puppo, G. 2019 BGK polyatomic model for rarefied flows. J. Sci. Comput. 78 (3), 18931916.CrossRefGoogle Scholar
Bhatnagar, P.L., Gross, E.P. & Krook, M. 1954 A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94 (3), 511.CrossRefGoogle Scholar
Bird, R.B., Stewart, W.E., Lightfoot, E.N. & Klingenberg, D.J. 2015 Introductory Transport Phenomena, vol. 1. Wiley.Google Scholar
Brull, S. & Schneider, J. 2009 On the ellipsoidal statistical model for polyatomic gases. Contin. Mech. Thermodyn. 20 (8), 489508.CrossRefGoogle Scholar
Cercignani, C. 1988 The Boltzmann equation. In The Boltzmann Equation and its Applications, pp. 40–103. Springer.CrossRefGoogle Scholar
Chapman, S. & Cowling, T.G. 1970 The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press.Google Scholar
Chen, F., Xu, A., Zhang, G., Li, Y. & Succi, S. 2010 Multiple-relaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number. Europhys. Lett. 90 (5), 54003.CrossRefGoogle Scholar
Gorban, A.N. & Karlin, I.V. 1994 General approach to constructing models of the Boltzmann equation. Physica A 206 (3–4), 401420.CrossRefGoogle Scholar
Grad, H. 1958 Principles of the kinetic theory of gases. In Thermodynamik der Gase/Thermodynamics of Gases, pp. 205–294. Springer.CrossRefGoogle Scholar
Green, D.W. & Southard, M.Z. 2019 Perry's Chemical Engineers’ Handbook. McGraw-Hill Education.Google Scholar
Hanumantharayappa, M.N., Thantanapally, C., Namburi, M., Kumaran, V. & Ansumali, S. 2021 LES/DNS of flow past T106 LPT cascade using a higher-order LB model. AIAA Paper 2021-3485.CrossRefGoogle Scholar
Holway, L.H. Jr. 1965 Kinetic theory of shock structure using an ellipsoidal distribution function. Rarefied Gas Dyn. 1, 193.Google Scholar
Holway, L.H. Jr. 1966 New statistical models for kinetic theory: methods of construction. Phys. Fluids 9 (9), 16581673.CrossRefGoogle Scholar
Huang, K. 2009 Introduction to Statistical Physics. Chapman and Hall/CRC.CrossRefGoogle Scholar
Huang, R., Lan, L. & Li, Q. 2020 Lattice Boltzmann simulations of thermal flows beyond the Boussinesq and ideal-gas approximations. Phys. Rev. E 102 (4), 043304.CrossRefGoogle ScholarPubMed
Kataoka, T. & Tsutahara, M. 2004 Lattice Boltzmann model for the compressible Navier–Stokes equations with flexible specific-heat ratio. Phys. Rev. E 69 (3), 035701.CrossRefGoogle ScholarPubMed
Kolluru, P.K., Atif, M. & Ansumali, S. 2020 a Extended BGK model for diatomic gases. J. Comput. Sci. 45, 101179.CrossRefGoogle Scholar
Kolluru, P.K., Atif, M., Namburi, M. & Ansumali, S. 2020 b Lattice Boltzmann model for weakly compressible flows. Phys. Rev. E 101 (1), 013309.CrossRefGoogle ScholarPubMed
Kuščer, I. 1989 A model for rotational energy exchange in polyatomic gases. Physica A 158 (3), 784800.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 1987 Fluid mechanics. Translated from the Russian by J.B. Sykes and W.H. Reid. Course Theor. Phys. 6, 300303.Google Scholar
Larina, I.N. & Rykov, V.A. 2010 Kinetic model of the Boltzmann equation for a diatomic gas with rotational degrees of freedom. Comput. Maths Math. Phys. 50 (12), 21182130.CrossRefGoogle Scholar
Leal, L.G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, vol. 7. Cambridge University Press.CrossRefGoogle Scholar
Lebowitz, J.L., Frisch, H.L. & Helfand, E. 1960 Nonequilibrium distribution functions in a fluid. Phys. Fluids 3 (3), 325338.CrossRefGoogle Scholar
Levermore, C.D. 1996 Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83 (5–6), 10211065.CrossRefGoogle Scholar
Liboff, R.L. 2003 Kinetic Theory: Classical, Quantum, and Relativistic Descriptions. Springer Science & Business Media.Google Scholar
Liepmann, H.W., Narasimha, R. & Chahine, M.T. 1962 Structure of a plane shock layer. Phys. Fluids 5 (11), 13131324.CrossRefGoogle Scholar
MacCormack, R. 2003 The effect of viscosity in hypervelocity impact cratering. J. Spacecr. Rockets 40 (5), 757763.CrossRefGoogle Scholar
McQuarrie, D.A. 2000 Statistical Mechanics. University Science Books.Google Scholar
Morse, T.F. 1964 Kinetic model for gases with internal degrees of freedom. Phys. Fluids 7 (2), 159169.CrossRefGoogle Scholar
Mott-Smith, H.M. 1951 The solution of the Boltzmann equation for a shock wave. Phys. Rev. 82 (6), 885.CrossRefGoogle Scholar
Müller, I. & Ruggeri, T. 2013 Rational Extended Thermodynamics. Springer Science & Business Media.Google Scholar
Namburi, M., Krithivasan, S. & Ansumali, S. 2016 Crystallographic lattice Boltzmann method. Sci. Rep. 6, 27172.CrossRefGoogle ScholarPubMed
Nie, X., Shan, X. & Chen, H. 2008 Thermal lattice Boltzmann model for gases with internal degrees of freedom. Phys. Rev. E 77 (3), 035701.CrossRefGoogle ScholarPubMed
Oh, C.K., Oran, E.S. & Sinkovits, R.S. 1997 Computations of high-speed, high Knudsen number microchannel flows. J. Thermophys. Heat Transfer 11 (4), 497505.CrossRefGoogle Scholar
Pozrikidis, C. & Jankowski, D. 1997 Introduction to Theoretical and Computational Fluid Dynamics, vol. 675. Oxford University Press.Google Scholar
Pullin, D.I. 1978 Kinetic models for polyatomic molecules with phenomenological energy exchange. Phys. Fluids 21 (2), 209216.CrossRefGoogle Scholar
Resibois, P. 1978 H-theorem for the (modified) nonlinear Enskog equation. J. Stat. Phys. 19 (6), 593609.CrossRefGoogle Scholar
Ruggeri, T. & Sugiyama, M. 2015 Rational Extended Thermodynamics Beyond the Monatomic Gas. Springer.CrossRefGoogle Scholar
Rykov, V.A. 1975 A model kinetic equation for a gas with rotational degrees of freedom. Fluid Dyn. 10 (6), 959966.CrossRefGoogle Scholar
Shakhov, E.M. 1968 Generalization of the Krook kinetic relaxation equation. Fluid Dyn. 3 (5), 9596.CrossRefGoogle Scholar
Singh, S.K. & Ansumali, S. 2015 Fokker–Planck model of hydrodynamics. Phys. Rev. E 91 (3), 033303.CrossRefGoogle ScholarPubMed
Singh, S.K., Thantanapally, C. & Ansumali, S. 2016 Gaseous microflow modeling using the Fokker–Planck equation. Phys. Rev. E 94 (6), 063307.CrossRefGoogle ScholarPubMed
Struchtrup, H. 2004 Stable transport equations for rarefied gases at high orders in the Knudsen number. Phys. Fluids 16 (11), 39213934.CrossRefGoogle Scholar
Succi, S. 2001 The Lattice Boltzmann Equation: for Fluid Dynamics and Beyond. Oxford University Press.Google Scholar
Tam, C.K.W. & Webb, J.C. 1993 Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107 (2), 262281.CrossRefGoogle Scholar
Tsutahara, M., Kataoka, T., Shikata, K. & Takada, N. 2008 New model and scheme for compressible fluids of the finite difference lattice Boltzmann method and direct simulations of aerodynamic sound. Comput. Fluids 37 (1), 7989.CrossRefGoogle Scholar
Wang, Z., Yan, H., Li, Q. & Xu, K. 2017 Unified gas-kinetic scheme for diatomic molecular flow with translational, rotational, and vibrational modes. J. Comput. Phys. 350, 237259.CrossRefGoogle Scholar
Wang-Chang, C.S. & Uhlenbeck, G.E. 1951 Transport phenomena in polyatomic gases. Research Rep. CM-681. University of Michigan Engineering.Google Scholar
Watari, M. 2007 Finite difference lattice Boltzmann method with arbitrary specific heat ratio applicable to supersonic flow simulations. Physica A 382 (2), 502522.CrossRefGoogle Scholar
Wu, L., White, C., Scanlon, T.J., Reese, J.M. & Zhang, Y. 2015 A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases. J. Fluid Mech. 763, 2450.CrossRefGoogle Scholar