Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-20T18:32:20.011Z Has data issue: false hasContentIssue false

Recurrence of travelling waves in transitional pipe flow

Published online by Cambridge University Press:  25 July 2007

R. R. KERSWELL
Affiliation:
Department of Mathematics, University of Bristol, Bristol BS8 1TW, UK
O. R. TUTTY
Affiliation:
School of Engineering Sciences, University of Southampton, Southampton, SO17 1BJ, UK

Abstract

The recent theoretical discovery of families of unstable travelling-wave solutions in pipe flow at Reynolds numbers lower than the transitional range, naturally raises the question of their relevance to the turbulent transition process. Here, a series of numerical experiments are conducted in which we look for the spatial signature of these travelling waves in transitionary flows. Working within a periodic pipe of 5D (diameters) length, we find that travelling waves with low wall shear stresses (lower branch solutions) are on a surface in phase space which separates initial conditions which uneventfully relaminarize and those which lead to a turbulent evolution. This dividing surface (a separatrix if turbulence is a sustained state) is then minimally the union of the stable manifolds of all these travelling waves. Evidence for recurrent travelling-wave visits is found in both 5D and 10D long periodic pipes, but only for those travelling waves with low-to-intermediate wall shear stress and for less than about 10% of the time in turbulent flow at Re = 2400. Given this, it seems unlikely that the mean turbulent properties such as wall shear stress can be predicted as an expansion solely over the travelling waves in which their individual properties are appropriately weighted. Instead the onus is on isolating further dynamical structures such as periodic orbits and including them in any such expansion.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Artuso, R., Aurell, E. & Cvitanovic, P. 1990 a Recycling of strange sets: I cycle expansions. Nonlinearity 3, 325360.CrossRefGoogle Scholar
Artuso, R., Aurell, E. & Cvitanovic, P. 1990 b Recycling of strange sets: II applications. Nonlinearity 3, 361386.CrossRefGoogle Scholar
Clever, R. M. & Busse, F. H. 1992 Three-dimensional convection in a horizontal fluid layer subjected to a constant shear. J. Fluid Mech. 234, 511527.CrossRefGoogle Scholar
Clever, R. M. & Busse, F. H. 1997 Tertiary and quaternary solutions for plane Couette flow. J. Fluid Mech. 344, 137153.CrossRefGoogle Scholar
Cvitanovic, P. 1988 Invariant measurement of strange sets in terms of cycles. Phys. Rev. Lett. 61, 27292732.CrossRefGoogle ScholarPubMed
Eckhardt, B., Faisst, H., Schmiegel, A. & Schumacher, J. 2002 Turbulence transition in shear flows. Advances in Turbulence IX: Proceedings of the Ninth European Turbulence Conference, Barcelona (ed. Castro, I. P., Hancock, P. E. & Thomas, T. G.), p. 701.Google Scholar
Eckhardt, B., Schneider, T., Hof, B. & Westerweel, J. 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447468.CrossRefGoogle Scholar
Eggels, J. G. M., Unger, F., Weiss, M. H., Westerweel, J., Adrian, R. J., Friedrich, R. & Nieuwstadt, F. T. M. 1994 Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175209.CrossRefGoogle Scholar
Faisst, H. & Eckhardt, B. 2003 Traveling waves in pipe flow. Phys. Rev. Lett. 91, 224502.CrossRefGoogle ScholarPubMed
Faisst, H. & Eckhardt, B. 2004 Sensitive dependence on initial conditions in transition to turbulence in pipe flow. J. Fluid Mech. 504, 343352.CrossRefGoogle Scholar
Hof, B., vanDoorne, C. W. H. Doorne, C. W. H., Westerweel, J., Nieustadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R. & Waleffe, F. 2004 Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305, 15941597.CrossRefGoogle ScholarPubMed
Hof, B., vanDoorne, C. W. H. Doorne, C. W. H., Westerweel, J. & Nieuwstadt, F. T. M. 2005 Turbulence regeneration in pipe flow at moderate Reynolds numbers Phys. Rev. Lett. 95, 214502.CrossRefGoogle ScholarPubMed
Hof, B., Westerweel, J., Schneider, T. M. & Eckhardt, B. 2006 Finite lifetime of turbulence in shear flows. Nature 443, 5962.CrossRefGoogle ScholarPubMed
Itano, T. & Toh, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70, 703716.CrossRefGoogle Scholar
Jiménez, J. & Simens, M. P. 2001 Low-dimensional dynamics in a turbulent wall flow. J. Fluid Mech. 435, 8191.CrossRefGoogle Scholar
Jiménez, J., Kawahara, G., Simens, M. P., Nagata, M. & Shiba, M. 2005 Characterization of near-wall turbulence in terms of equilibrium and ‘bursting’ solutions. Phys. Fluids 17, 015105.CrossRefGoogle Scholar
Kawahara, G. 2005 Laminarization of minimal plane Couette Flow: Going beyond the basin of attraction of turbulence. Phys. Fluids 17, 041702.CrossRefGoogle Scholar
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291300.CrossRefGoogle Scholar
Kerswell, R. R. 2005 Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity 18, R17R44.CrossRefGoogle Scholar
Lagha, M. & Manneville, P. 2007 Modeling transitional plane Couette flow. Eur. Phys. J. (submitted).CrossRefGoogle Scholar
Nagata, M. 1990 Three-dimensional finite-amplitude solutions to plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.CrossRefGoogle Scholar
Nikitin, N. 2006 Third-order-accurate semi-implicit Runge–Kutta scheme for incompressible Navier–Stokes equations. Intl J. Numer. Meth. Fluids 51, 221233.CrossRefGoogle Scholar
Orszag, S. A. & Kells, L. C. 1980 J. Fluid Mech. 96, 159205.CrossRefGoogle Scholar
Peixinho, J. & Mullin, T. 2006 Decay of turbulence in pipe flow. Phys. Rev. Lett. 96, 094501.CrossRefGoogle ScholarPubMed
Pringle, C. & Kerswell, R. R. 2007 Asymmetric, helical and mirror-symmetric travelling waves in pipe flow. Phys. Rev. Lett. (submitted) (arXiv:physics/0703210).CrossRefGoogle Scholar
Schlichting, H. 1968 Boundary Layer Theory. McGraw-Hill.Google Scholar
Schmiegel, A. 1999 Transition to turbulence in linearly stable shear flows. PhD thesis Philipps–Universitat Marburg.Google Scholar
Schmiegel, A. & Eckhardt, B. 1997 Fractal stability border in plane Couette flow. Phys. Rev. Lett. 277, 197225.Google Scholar
Schneider, T. M., Eckhardt, B. & Vollmer, J. 2007 Statistical analysis of coherent structures in transitional pipe flow. Phys. Rev. E (submitted).CrossRefGoogle Scholar
Skufca, J., Yorke, J. A. & Eckhardt, B. 2006 The edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96, 174101.CrossRefGoogle Scholar
Toh, S. & Itano, T. 2003 A periodic-like solution in channel flow. J. Fluid Mech. 481, 6776.CrossRefGoogle Scholar
vanVeen, L. Veen, L., Kida, S. & Kawahara, G. 2006 Periodic motion representing isotropic turbulence. Fluid Dyn. Res. 38, 1946.CrossRefGoogle Scholar
Waleffe, F. 1998 Three dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81, 41404143.CrossRefGoogle Scholar
Waleffe, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 508, 333371.Google Scholar
Waleffe, F. 2003 Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15, 15171534.CrossRefGoogle Scholar
Wedin, H. & Kerswell, R. R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.CrossRefGoogle Scholar
Willis, A. P. & Kerswell, R. R. 2007 Critical behaviour in the relaminarisation of localised turbulence in pipe flow. Phys. Rev. Lett. 98, 014501.CrossRefGoogle Scholar
Wygnanski, I. J. & Champagne, F. H. 1973 On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281351.CrossRefGoogle Scholar