Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T23:24:50.688Z Has data issue: false hasContentIssue false

Reattachment streaks in hypersonic compression ramp flow: an input–output analysis

Published online by Cambridge University Press:  07 October 2019

Anubhav Dwivedi*
Affiliation:
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
G. S. Sidharth
Affiliation:
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
Joseph W. Nichols
Affiliation:
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
Graham V. Candler
Affiliation:
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
Mihailo R. Jovanović
Affiliation:
Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
*
Email address for correspondence: [email protected]

Abstract

We employ global input–output analysis to quantify amplification of exogenous disturbances in compressible boundary layer flows. Using the spatial structure of the dominant response to time-periodic inputs, we explain the origin of steady reattachment streaks in a hypersonic flow over a compression ramp. Our analysis of the laminar shock–boundary layer interaction reveals that the streaks arise from a preferential amplification of upstream counter-rotating vortical perturbations with a specific spanwise wavelength. These streaks are associated with heat-flux striations at the wall near flow reattachment and they can trigger transition to turbulence. The streak wavelength predicted by our analysis compares favourably with observations from two different hypersonic compression ramp experiments. Furthermore, our analysis of inviscid transport equations demonstrates that base-flow deceleration contributes to the amplification of streamwise velocity and that the baroclinic effects are responsible for the production of streamwise vorticity. Finally, the appearance of the temperature streaks near reattachment is triggered by the growth of streamwise velocity and streamwise vorticity perturbations as well as by the amplification of upstream temperature perturbations by the reattachment shock.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: X-Computational Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

References

Berlin, S., Lundbladh, A. & Henningson, D. S. 1994 Spatial simulations of oblique transition in a boundary layer. Phys. Fluids 6 (6), 19491951.Google Scholar
Bradshaw, P.1973 Effects of streamline curvature on turbulent flow. Tech. Rep. 169. AGARDograph.Google Scholar
Brandt, L., Sipp, D., Pralits, J. O. & Marquet, O. 2011 Effect of base-flow variation in noise amplifiers: the flat-plate boundary layer. J. Fluid Mech. 687, 503528.Google Scholar
Candler, G. V., Johnson, H. B., Nompelis, I., Gidzak, V. M., Subbareddy, P. K. & Barnhardt, M.2015 Development of the US3D code for advanced compressible and reacting flow simulations. In 53rd AIAA Aerospace Sciences Meeting, AIAA 2015-1893. AIAA.Google Scholar
Chang, C. L. & Malik, M. R. 1994 Oblique-mode breakdown and secondary instability in supersonic boundary layers. J. Fluid Mech. 273, 323360.Google Scholar
Chu, B.-T. 1965 On the energy transfer to small disturbances in fluid flow (part I). Acta Mech. 1 (3), 215234.Google Scholar
Chuvakhov, P. V., Borovoy, V. Y., Egorov, I. V., Radchenko, V. N., Olivier, H. & Roghelia, A. 2017 Effect of small bluntness on formation of Görtler vortices in a supersonic compression corner flow. J. Appl. Mech. Tech. Phys. 58 (6), 975989.Google Scholar
Dwivedi, A., Nichols, J. W., Jovanović, M. R. & Candler, G. V.2017 Optimal spatial growth of streaks in oblique shock/boundary layer interaction. In 8th AIAA Theoretical Fluid Mechanics Conference. AIAA 2017-4163. AIAA.Google Scholar
Dwivedi, A., Sidharth, G. S., Candler, G. V., Nichols, J. W. & Jovanović, M. R.2018 Input–output analysis of shock boundary layer interaction. In 2018 Fluid Dynamics Conference. AIAA 2018-3220. AIAA.Google Scholar
Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18 (4), 487488.Google Scholar
Fasel, H. F., Thumm, A. & Bestek, H. 1993 Direct numerical simulation of transition in supersonic boundary layers: oblique breakdown. In Fluids Engineering Conference, pp. 7792.Google Scholar
Fedorov, A. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 7995.Google Scholar
Finnigan, J. J. 1983 A streamline coordinate system for distorted two-dimensional shear flows. J. Fluid Mech. 130, 241258.Google Scholar
Hall, P. 1983 The linear development of Görtler vortices in growing boundary layers. J. Fluid Mech. 130, 4158.Google Scholar
Hanifi, A., Schmid, P. J. & Henningson, D. S. 1996 Transient growth in compressible boundary layer flow. Phys. Fluids 8 (3), 826837.Google Scholar
Inger, G. R. 1977 Three-dimensional heat-and mass-transfer effects across high-speed reattaching flows. AIAA J. 15 (3), 383389.Google Scholar
Jeun, J., Nichols, J. W. & Jovanović, M. R. 2016 Input–output analysis of high-speed axisymmetric isothermal jet noise. Phys. Fluids 28 (4), 047101.Google Scholar
Jovanović, M. R.2004 Modeling, analysis, and control of spatially distributed systems. PhD thesis, University of California, Santa Barbara, CA.Google Scholar
Jovanović, M. R. & Bamieh, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145183.Google Scholar
Kansa, E. J. 2002 Local, point-wise rotational transformations of the conservation equations into stream-wise coordinates. Comput. Maths Applics. 43 (3-5), 501511.Google Scholar
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98 (2), 243251.Google Scholar
Ma, Y. & Zhong, X. 2003 Receptivity of a supersonic boundary layer over a flat plate. Part 1: Wave structures and interactions. J. Fluid Mech. 488, 3178.Google Scholar
Maurizi, A., Di Sabatino, S., Trombetti, F. & Tampieri, F. 1997 A method of analysis for turbulent flows using the streamline coordinate system. Boundary-Layer Meteorol. 82 (3), 379397.Google Scholar
McKeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.Google Scholar
Mustafa, M. A., Parziale, N. J., Smith, M. S. & Marineau, E. C. 2019 Amplification and structure of streamwise-velocity fluctuations in compression-corner shock-wave/turbulent boundary-layer interactions. J. Fluid Mech. 863, 10911122.Google Scholar
Navarro-Martinez, S. & Tutty, O. R. 2005 Numerical simulation of Görtler vortices in hypersonic compression ramps. Comput. Fluids 34 (2), 225247.Google Scholar
Nichols, J. W. 2018 Input/output analysis of f and s mode synchronization in hypersonic boundary layers. Phys. Rev. Fluids (submitted).Google Scholar
Fosas de Pando, M. & Schmid, P. J. 2017 Optimal frequency-response sensitivity of compressible flow over roughness elements. J. Turbul. 18 (4), 338351.Google Scholar
Patel, V. C. & Sotiropoulos, F. 1997 Longitudinal curvature effects in turbulent boundary layers. Prog. Aerosp. Sci. 33 (1–2), 170.Google Scholar
Ran, W., Zare, A., Hack, M. J. P. & Jovanović, M. R. 2019 Stochastic receptivity analysis of boundary layer flow. Phys. Rev. Fluids 4 (9), 093901.Google Scholar
Reshotko, E. 2001 Transient growth: a factor in bypass transition. Phys. Fluids 13 (5), 10671075.Google Scholar
Richmond, M. C., Chen, H. C. & Patel, V. C.1986 Equations of laminar and turbulent flows in general curvilinear coordinates. Tech. Rep. Iowa Institute of Hydraulic Research.Google Scholar
Roghelia, A., Chuvakhov, P., Olivier, H. & Egorov, I.2017a Experimental investigation of Görtler vortices in hypersonic ramp flows behind sharp and blunt leading edges. 47th AIAA Fluid Dynamics Conference. AIAA 2017-3463. AIAA.Google Scholar
Roghelia, A., Olivier, H., Egorov, I. & Chuvakhov, P. 2017b Experimental investigation of Görtler vortices in hypersonic ramp flows. Exp. Fluids 58 (10), 139.Google Scholar
Sandham, N. D., Adams, N. A. & Kleiser, L. 1995 Direct simulation of breakdown to turbulence following oblique instability waves in a supersonic boundary layer. Appl. Sci. Res. 54 (3), 223234.Google Scholar
Sandham, N. D., Schülein, E., Wagner, A., Willems, S. & Steelant, J. 2014 Transitional shock-wave/boundary-layer interactions in hypersonic flow. J. Fluid Mech. 752, 349382.Google Scholar
Schlichting, H. & Gersten, K. 2016 Boundary-layer Theory. Springer.Google Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.Google Scholar
Schmid, P. J. & Henningson, D. S. 1992 A new mechanism for rapid transition involving a pair of oblique waves. Phys. Fluids 4 (9), 19861989.Google Scholar
Schmidt, O. T., Towne, A., Rigas, G., Colonius, T. & Brès, G. A. 2018 Spectral analysis of jet turbulence. J. Fluid Mech. 855, 953982.Google Scholar
Sidharth, G. S. & Candler, G. V. 2018 Subgrid-scale effects in compressible variable-density decaying turbulence. J. Fluid Mech. 846, 428459.Google Scholar
Sidharth, G. S., Candler, G. V. & Dimotakis, P.2014 Baroclinic torque and implications for subgrid-scale modeling. In 7th AIAA Theoretical Fluid Mechanics Conference. 2014-3214.Google Scholar
Sidharth, G. S., Dwivedi, A., Candler, G. V. & Nichols, J. W.2017 Global linear stability analysis of high speed flows on compression ramps. In 47th AIAA Fluid Dynamics Conference. AIAA 2017-3455. AIAA.Google Scholar
Sidharth, G. S., Dwivedi, A., Candler, G. V. & Nichols, J. W. 2018 Onset of three-dimensionality in supersonic flow over a slender double wedge. Phys. Rev. Fluids 3 (9), 093901.Google Scholar
Simeonides, G. & Haase, W. 1995 Experimental and computational investigations of hypersonic flow about compression ramps. J. Fluid Mech. 283, 1742.Google Scholar
Sipp, D. & Marquet, O. 2013 Characterization of noise amplifiers with global singular modes: the case of the leading-edge flat-plate boundary layer. Theor. Comput. Fluid Dyn. 27 (5), 617635.Google Scholar
Zapryagaev, V. I., Kavun, I. N. & Lipatov, II. 2013 Supersonic laminar separated flow structure at a ramp for a free-stream Mach number of 6. Prog. Flight Phys. 5, 349362.Google Scholar
Zhuang, Y., Tan, H., Liu, Y., Zhang, Y. & Ling, Y. 2017 High resolution visualization of Görtler-like vortices in supersonic compression ramp flow. J. Vis. 20 (3), 505508.Google Scholar
Zuccher, S., Tumin, A. & Reshotko, E.2005 Optimal disturbances in compressible boundary layers-complete energy norm analysis. In 4th AIAA Theoretical Fluid Mechanics Meeting. AIAA 2005-5314. AIAA.Google Scholar