Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T20:20:12.421Z Has data issue: false hasContentIssue false

Rapid granular flows down inclined planar chutes. Part 1. Steady flows, multiple solutions and existence domains

Published online by Cambridge University Press:  19 May 2010

MARK J. WOODHOUSE*
Affiliation:
Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
ANDREW J. HOGG
Affiliation:
Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
ALISTAIR A. SELLAR
Affiliation:
Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
*
Present address: School of Mathematics, Alan Turing Building, University of Manchester, Oxford Road, Manchester M13 9PL, UK. Email address for correspondence: [email protected]

Abstract

The highly agitated flow of grains down an inclined chute is modelled using a kinetic theory for inelastic collisions. Solutions corresponding to steady, fully developed flows are obtained by solving numerically a nonlinear system of ordinary differential equations using a highly accurate pseudospectral method based on mapped Chebyshev polynomials. The solutions are characterized by introducing macroscopic, depth-integrated variables representing the mass flux of flowing material per unit width, its centre-of-mass and the mass supported within the flowing layer, and the influence of the controlling parameters on these solutions is investigated. It is shown that, in certain regions of parameter space, multiple steady solutions can be found for a specified mass flux of material. An asymptotic analysis of the governing equations, appropriate to highly agitated flows, is also developed and these results aid in the demarcation of domains in parameter space where steady solutions can be obtained.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. (Ed.) 1965 Handbook of Mathematical Functions, 9th edn. Dover.Google Scholar
Ahn, H., Brennen, C. E. & Sabersky, R. H. 1991 Measurements of velocity, velocity fluctuation, density, and stresses in chute flows of granular materials. J. Appl. Mech. 58, 792803.CrossRefGoogle Scholar
Ahn, H., Brennen, C. E. & Sabersky, R. H. 1992 Analysis of the fully developed chute flow of granular materials. J. Appl. Mech. 59, 109119.CrossRefGoogle Scholar
Anderson, K. G. & Jackson, R. 1992 A comparison of the solutions of some proposed equations of motion of granular materials for fully developed flow down inclined planes. J. Fluid Mech. 241, 145168.CrossRefGoogle Scholar
Azanza, E., Chevoir, F. & Moucheront, P. 1999 Experimental study of collisional granular flows down an inclined plane. J. Fluid Mech. 400, 199227.CrossRefGoogle Scholar
Boyd, J. P. 2000 Chebyshev and Fourier Spectral Methods, 2nd edn. Dover.Google Scholar
Brey, J. J., Ruiz-Montero, M. J. & Moreno, F. 2001 Hydrodynamics of an open vibrated granular system. Phys. Rev. E 63, 061305/1–10.CrossRefGoogle ScholarPubMed
Campbell, C. S. 1990 Rapid granular flows. Annu. Rev. Fluid Mech. 22, 5792.CrossRefGoogle Scholar
Campbell, C. S. & Brennen, C. E. 1985 Chute flows of granular material: some computer simulations. J. Appl. Mech. 52, 172178.CrossRefGoogle Scholar
Chapman, S. & Cowling, T. G. 1970 The Mathematical Theory Of Non-Uniform Gases, 3rd edn. Cambridge University Press.Google Scholar
Drake, T. G. 1991 Granular flow: physical experiments and their implications for microstructural theories. J. Fluid Mech. 225, 121152.CrossRefGoogle Scholar
Forterre, Y. & Pouliquen, O. 2001 Longitudinal vortices in granular flows. Phys. Rev. Lett. 86, (26), 58865889.CrossRefGoogle ScholarPubMed
Forterre, Y. & Pouliquen, O. 2002 Stability analysis of rapid granular chute flows: formation of longitudinal vortices. J. Fluid Mech. 467, 361387.CrossRefGoogle Scholar
Forterre, Y. & Pouliquen, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 124.CrossRefGoogle Scholar
Garzó, V. & Dufty, J. W. 1999 Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59, (5), 58955911.CrossRefGoogle ScholarPubMed
Goldhirsch, I. 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267293.CrossRefGoogle Scholar
Haff, P. K. 1983 Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401430.CrossRefGoogle Scholar
Hanes, D. M. & Walton, O. R. 2000 Simulations and physical measurements of glass spheres flowing down a bumpy incline. Powder Technol. 109, 133144.CrossRefGoogle Scholar
Huan, C., Yang, X., Candela, D., Mair, R. W. & Walsworth, R. L. 2004 NMR experiments on a three-dimensional vibrofluidized granular medium. Phys. Rev. E 69, 041302/1–13.CrossRefGoogle ScholarPubMed
Jaeger, H. M., Nagel, S. R. & Behringer, R. P. 1996 Granular solids, liquids, and gases. Rev. Mod. Phys. 68, (4), 12591273.CrossRefGoogle Scholar
Jenkins, J. T. 2006 Dense shearing flows of inelastic disks. Phys. Fluids 18, 103307/1–9.CrossRefGoogle Scholar
Jenkins, J. T. 2007 Dense inclined flows of inelastic spheres. Granul. Matter 10, 4752.CrossRefGoogle Scholar
Jenkins, J. T. & Hanes, D. M. 1993 The balance of momentum and energy at an interface between colliding and freely flying grains in a rapid granular flow. Phys. Fluids A 5, (3), 781783.CrossRefGoogle Scholar
Jenkins, J. T. & Richman, M. W. 1985 Grad's 13-moment system for a dense gas of inelastic spheres. Arch. Rat. Mech. Anal. 87, (4), 355377.CrossRefGoogle Scholar
Jenkins, J. T. & Savage, S. B. 1983 A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech. 130, 187202.CrossRefGoogle Scholar
Jenkins, J. T. & Zhang, C. 2002 Kinetic theory for identical, frictional, nearly elastic spheres. Phys. Fluids 14, 12281235.CrossRefGoogle Scholar
Johnson, P. C. & Jackson, R. 1987 Frictional–collisional constitutive relations for granular materials, with application to plane shearing. J. Fluid Mech. 176, 6793.CrossRefGoogle Scholar
Johnson, P. C., Nott, P. & Jackson, R. 1990 Frictional–collisional equations of motion for particulate flows and their applications to chutes. J. Fluid Mech. 210, 501535.CrossRefGoogle Scholar
Kumaran, V. 1998 a Kinetic theory for a vibro-fluidized bed. J. Fluid Mech. 364, 163185.CrossRefGoogle Scholar
Kumaran, V. 1998 b Temperature of a granular material “fluidized” by external vibrations. Phys. Rev. E 57 (5), 56605664.CrossRefGoogle Scholar
Kumaran, V. 2008 Dense granular flow down an inclined plane: from kinetic theory to granular dynamics. J. Fluid Mech. 599, 121168.CrossRefGoogle Scholar
Lun, C. K. K. & Savage, S. B. 1986 The effects of an impact velocity dependent coefficient of restitution on stresses developed by sheared granular materials. Acta Mech. 63, 1544.CrossRefGoogle Scholar
Lun, C. K. K., Savage, S. B., Jeffrey, D. J. & Chepurniy, N. 1984 Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech. 140, 223256.CrossRefGoogle Scholar
McNamara, S. & Young, W. R. 1992 Inelastic collapse and clumping in a one-dimensional granular medium. Phys. Fluids A 4, (3), 496504.CrossRefGoogle Scholar
McNamara, S. & Young, W. R. 1994 Inelastic collapse in two dimensions. Phys. Rev. E 50, (1), 2831.CrossRefGoogle ScholarPubMed
Mitarai, N. & Nakanishi, H. 2004 Linear stability analysis of rapid granular flow down a slope and density wave formation. J. Fluid Mech. 507, 309334.CrossRefGoogle Scholar
Mitarai, N. & Nakanishi, H. 2005 Bagnold scaling, density plateau, and kinetic theory analysis of dense granular flow. Phys. Rev. Lett. 94, 128001/1–4.CrossRefGoogle ScholarPubMed
Nott, P. & Jackson, R. 1992 Frictional–collisional equations of motion for granular materials and their application to flow in aerated chutes. J. Fluid Mech. 241, 125144.CrossRefGoogle Scholar
Ramírez, R. & Soto, R. 2003 Temperature inversion in granular fluids under gravity. Physica A 322, 7380.CrossRefGoogle Scholar
Rheinboldt, W. C. 1986 Numerical Analysis of Parametrized Nonlinear Equations, University of Arkansas Lecture Notes in the Mathematical Sciences, vol. 7. John Wiley & Sons.Google Scholar
Richman, M. W. 1988 Boundary conditions based upon a modified Maxwellian velocity distribution for flows of identical, smooth, nearly elastic spheres. Acta Mech. 75, 227240.CrossRefGoogle Scholar
Richman, M. W. & Marciniec, R. P. 1990 Gravity-driven granular flows of smooth, inelastic spheres down bumpy inclines. J. Appl. Mech. 57, 10361043.CrossRefGoogle Scholar
Savage, S. B. 1979 Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 92, 5396.CrossRefGoogle Scholar
Sela, N. & Goldhirsch, I. 1998 Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order. J. Fluid Mech. 361, 4174.CrossRefGoogle Scholar
Sellar, A. A. 2003 Free-surface rapid granular flows. PhD thesis, School of Mathematics, University of Bristol.Google Scholar
Silbert, L. E., Ertaş, D., Grest, G. S., Halsey, T. C., Levine, D. & Plimpton, S. J. 2001 Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64, 051302/1–14.CrossRefGoogle ScholarPubMed
Silbert, L. E., Grest, G. S., Brewster, R. & Levine, A. J. 2007 Rheology and contact lifetimes in dense granular flows. Phys. Rev. Lett. 99, 068002/1–4.CrossRefGoogle ScholarPubMed
Silbert, L. E., Grest, G. S., Plimpton, S. J. & Levine, D. 2002 Boundary effects and self-organization in dense granular flows. Phys. Fluids 14, (8), 26372646.CrossRefGoogle Scholar
Soto, R., Mareschal, M. & Risso, D. 1999 Departure from Fourier's law for fluidized granular media. Phys. Rev. Lett. 83, (24), 50035006.CrossRefGoogle Scholar
Walton, O. R. 1993 Numerical simulation of inclined chute flows of monodisperse, inelastic, frictional spheres. Mech. Mater. 16, 239247.CrossRefGoogle Scholar
Woodhouse, M. J. & Hogg, A. J. 2010 Rapid granular flows down inclined planar chutes. Part 2. Linear stability analysis of steady flow solutions. J. Fluid Mech. Forthcoming.CrossRefGoogle Scholar
Zheng, X. M. & Hill, J. M. 1996 Molecular dynamics modelling of granular chute flow: density and velocity profiles. Powder Technol. 86, 219227.CrossRefGoogle Scholar