Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T20:34:00.251Z Has data issue: false hasContentIssue false

Rankine–Hugoniot relations for shocks in heterogeneous mixtures

Published online by Cambridge University Press:  07 March 2007

S. L. GAVRILYUK*
Affiliation:
University Aix-Marseille III and Polytech Marseille, UMR CNRS 6595, IUSTI, 5 rue E. Fermi, 13453 Marseille Cedex 13, [email protected]
R. SAUREL
Affiliation:
Institut Universitaire de France and Polytech Marseille, UMR CNRS 6595, IUSTI, 5 rue E. Fermi, 13453 Marseille Cedex 13, [email protected]
*
Author to whom correspondence should be addressed.

Abstract

The conservation of mass, momentum and energy are not sufficient to close a system of jump relations for shocks propagating in a heterogeneous mixture of compressible fluids. We propose here a closed set of relations corresponding to a two-stage structure of shock fronts. At the first stage, microkinetic energy due to the relative motion of mixture components is produced at the shock front. At the second stage, this microkinetic energy disappears inducing strong variations in the thermodynamical states that reach mechanical equilibrium. The microkinetic energy produced at the shock front is estimated by using an idea developed earlier for turbulent shocks in compressible fluids. The relaxation zone between the shocked state and the equilibrium state is integrated over a thermodynamic path a justification of which is provided. Comparisons with experiments on shock propagation in a mixture of condensed materials confirm the proposed theory.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alekseev, Yu. F., Al'tshuler, L. V. & Krupnikova, V. P. 1971 Shock compression of two-component paraffin-tungsten mixtures. J. Appl. Mech. Tech. Phys. 12, 624627.CrossRefGoogle Scholar
Baer, M. R. & Nunziato, J. W. 1986 A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Intl J. Multiphase Flow 12, 861889.CrossRefGoogle Scholar
Baer, M. R. & Trott, W. M. 2002 Theoretical and experimental mesoscale studies of impact-loaded granular explosives and simulant materials. Proc. 12th Intl Detonation Symposium, San Diego, CA, ONR 333-05-2.Google Scholar
Bardenhagen, S. G., Roessig, K. M., Guilkey, J. E. Byutner, O., Bedrov, D. & Smith, G. D. 2002 Direct numerical simulation of weak shocks in granular materials. Proc. 12th Intl Detonantion Symposium, San Diego, CA, ONR 333-05-2.Google Scholar
Bedford, A. & Drumheller, D. S. 1978 Theories of immiscible and structured mixtures. Intl J. Engng Sci. 21, 863960.CrossRefGoogle Scholar
Benson, D. J., Nesterenko, V. F., Jonsdottir, F. & Meyers, M. A. 1997 Quasistatic and dynamic regimes of granular material deformation under impulse loading. J. Mech. Phys. Solids 45, 19551999.CrossRefGoogle Scholar
Bdzil, J. B., Menikoff, R., Son, S. F., Kapila, A. K. & Stewart, D. S. 1999 Two-phase modeling of a deflagration-to-detonation transition in granular materials : A critical examination of the modeling issues. Phys. Fluids 11, 378402.CrossRefGoogle Scholar
Dremin, A. N. & Karpukhin, I. A. 1960 Method of determination of shock adiabats of disperse materials. Prikl. Mekh. Tekh. Fiz. N3, 184188 (in Russian).Google Scholar
Fedorov, A. V. & Fedorova, N. N. 1992 Structute, propagation and reflection of shock waves in a mixture of solids (the hydrodynamic approximation). J. Appl. Mech. Tech. Phys. 33, N 4 487494.CrossRefGoogle Scholar
Fickett, W. & Davis, W. C. 1979 Detonation : Theory and Experiment. University of California Press, Berckley.Google Scholar
Gavrilyuk, S. L. & Saurel, R. 2002 Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys. 175, 326360.CrossRefGoogle Scholar
Gavrilyuk, S. L. & Saurel, R. 2006 Estimation of the turbulent energy production across a shock wave. J. Fluid Mech. 549, 131139.CrossRefGoogle Scholar
Kapila, A. K., Menikoff, R., Bdzil, J. B., Son, S. F. & Stewart, D. S. 2001 Two-phase modeling of DDT in granular materials: reduced equations. Phys. Fluids 13, 30023024.CrossRefGoogle Scholar
Kapila, A. K., Son, S. F., Bdzil, J. B., Menikoff, R. & Stewart, D. S. 1997 Two-phase modeling of DDT : structure of the velocity-relaxation zone. Phys. Fluids 9, 38853897.CrossRefGoogle Scholar
Krueger, B. R. & Vreeland, T. Jr., 1991 A Hugoniot theory for solid and powder mixtures. J. Appl. Phys. 69, 710716.CrossRefGoogle Scholar
Marsh, S. P. 1980 LASL Shock Hugoniot Data. University of California Press.Google Scholar
McQueen, R. G., Marsh, S. P., Taylor, J. W., Fritz, J. N. & Carter, W. J. 1970 High Velocity Impact Phenomena (ed. Kinslow, R.), p. 293. Academic.CrossRefGoogle Scholar
Mohammadi, B. & Pironneau, O. 1994 Analysis of the k-ϵ Turbulence Model. Masson/Wiley.Google Scholar
Nesterenko, V. F. 2001 Dynamics of Heterogeneous Materials. Springer.CrossRefGoogle Scholar
Resnyansky, A. D. & Bourne, N. K. 2004 Shock-wave compression of a porous material. J. Appl. Phys. 95, 17601769.CrossRefGoogle Scholar
Saurel, R., Gavrilyuk, S. L. & Renaud, F. 2003 A multiphase model with internal degrees of freedom : application to shock-bubble interaction. J. Fluid Mech. 495, 283321.CrossRefGoogle Scholar
Saurel, R. & LeMetayer, O. Metayer, O. 2001 A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J. Fluid Mech. 431, 239271.CrossRefGoogle Scholar
Saurel, R., LeMetayer, O. Metayer, O., Massoni, J. & Gavrilyuk, S. L. 2007 Shock jump relations for multiphase mixtures with stiff mechanical relaxation. Shock Waves (to appear), http://iusti.polytech.univ-mrs.fr/smash/publications.htmlCrossRefGoogle Scholar
Trunin, R. F. 2001 Shock compression of condensed materials (laboratory study). Phys. – Uspekhi 44, N 4, 371396.CrossRefGoogle Scholar
Wilcox, D. 1998 Turbulence Modeling for CFD. DCW Industries.Google Scholar
Wood, A. B. 1930 A Textbook of Sound. G. Bell and Sons LTD, London.Google Scholar