Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-19T03:42:19.192Z Has data issue: false hasContentIssue false

Quasi-periodic and chaotic flow regimes in a thermally driven, rotating fluid annulus

Published online by Cambridge University Press:  26 April 2006

P. L. Read
Affiliation:
Meteorological Office, London Road, Bracknell, Berkshire. UK Robert Hooke Institute, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK
M. J. Bel
Affiliation:
Meteorological Office, London Road, Bracknell, Berkshire. UK
D. W. Johnson
Affiliation:
Meteorological Office, London Road, Bracknell, Berkshire. UK
R. M. Small
Affiliation:
Meteorological Office, London Road, Bracknell, Berkshire. UK

Abstract

Results are presented from analyses of high-precision time series of measurements of temperature and total heat transport obtained in a high-Prandtl-number (Pr = 26) fluid contained in a rotating, cylindrical annulus subject to a horizontal temperature gradient. Emphasis is placed on regions of parameter space close to the onset of irregular and/or chaotic behaviour. Two distinct transitions from oscillatory to apparently chaotic flow have been identified. The first occurs in an isolated region of parameter space at moderate to high Taylor number in association with a transition to a lower azimuthal wavenumber, in which a quasi-periodic (m = 3) amplitude vacillation (on a 2-torus) gives way to a low-dimensional (D ∼ 3) chaotically modulated vacillation at very low frequency (apparently organized about a 3-torus). The spatial structure of the chaotic flow exhibits the irregular growth and decay of azimuthal sidebands suggestive of a nonlinear competition between adjacent azimuthal wavenumbers. The other main transition to aperiodic flow occurs at high Taylor number as the stability parameter Θ is decreased, and is associated with the onset of ‘structural vacillation’. This transition appears to be associated with the development of small-scale instabilities within the main m = 3 baroclinic wave pattern, and exhibits a route to chaos via intermittency. The nature of the apparent chaos in these two aperiodic regimes is discussed in relation to possible mechanisms for deterministic chaos, apparatus limitations, and to previous attempts to model nonlinear baroclinic waves using low-order spectral models.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergé, P., Pomeau, Y. & Vidal, C. 1984 Order in Chaos. Wiley.
Boville, B. A. 1982 Strongly nonlinear vacillation in baroclinic waves. J. Atmos. Sci. 39, 12271240.Google Scholar
Brindley, J. & Moroz, I. M. 1980 Lorenz attractor behaviour in a continuously stratified baroclinic fluid. Phys. Lett. 77A, 441444.Google Scholar
Broomhead, D. & King, G. P. 1986 Extracting qualitative dynamics from experimental data. Physica 20D, 217236.Google Scholar
Broomhead, D., Jones, R. & King, G. P. 1987 Topological dimension and local coordinates from time series data. J. Phys. A: Math. Gen. 20, L563L569.Google Scholar
Buzyna, G., Pfeffer, R. L. & Kung, R. 1984 Transition to geostrophic turbulence in a rotating differentially heated annulus of fluid. J. Fluid Mech. 145, 377403.Google Scholar
Buzyna, G., Pfeffer, R. L. & Kung, R. 1989 Kinematic properties of wave amplitude vacillation in a thermally driven rotating fluid. J. Atmos. Sci. 46, 27162729.Google Scholar
Cehelsky, P. & Tung, K. K. 1987 Theories of multiple equilibria and weather regimes - a critical reexamination. Part II: baroclinic two-layer models. J. Atmos. Sci. 44, 32823303.Google Scholar
Crutchfield, J. P. & Kaneko, K. 1988 Are attractors relevant to turbulence? Phys. Rev. Lett. 60, 27152718.Google Scholar
Curry, J. H., Herring, J. H., Loncaric, J. & Orszag, S. A. 1984 Order and disorder in two- and three-dimensional Bénard convection. J. Fluid Mech. 147, 138.Google Scholar
Drazin, P. G. 1970 Nonlinear baroclinic instability of a continuous zonal flow. Q. J. R. Met. Soc. 96, 667676.Google Scholar
Eckmann, J.-P. & Ruelle, D. 1985 Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617656.Google Scholar
Farmer, J. D., Ott, E. & Yorke, J. 1983 Dimension of chaotic attractors. Physica 7D, 153180.Google Scholar
Farrell, B. F. 1989 Optimal excitation of baroclinic waves. J. Atmos. Sci. 46, 11931206.Google Scholar
Fowlis, W. W. & Pfeffer, R. L. 1969 Characteristics of amplitude vacillation in a rotating, differentially-heated fluid determined by a multi-probe technique. J. Atmos. Sci. 26, 100108.Google Scholar
Gibbon, J. D. & McGuinness, M. J. 1980 A derivation of the Lorenz equations for some unstable dispersive physical systems. Phys. Lett. 77A, 295299.Google Scholar
Grassberger, P. & Procaccia, I. 1983 Characterization of strange attractors. Phys. Rev. Lett. 50, 346349.Google Scholar
Guckenheimer, J. & Buzyna, G. 1983 Dimension measurements for geostrophic turbulence. Phys. Rev. Lett. 51, 14381441.Google Scholar
Hart, J. E. 1969 Finite amplitude baroclinic instability. Ann. Rev. Fluid Mech. 11, 147172.Google Scholar
Hart, J. E. 1985 A laboratory study of baroclinic chaos on the f-plane. Tellus 37A, 286296.Google Scholar
Hart, J. E. 1986 A model for the transition to baroclinic chaos. Physica 20D, 350362.Google Scholar
Hide, R. & Mason, P. J. 1975 Sloping convection in a rotating fluid. Adv. Phys. 24, 47100.Google Scholar
Hide, R., Mason, P. J. & Plumb, R. A. 1977 Thermal convection in a rotating fluid subject to a horizontal temperature gradient: spatial and temporal characteristics of fully-developed baroclinic waves. J. Atmos. Sci. 34, 930950.Google Scholar
Hignett, P. 1982 A note on the heat transfer by the axisymmetric thermal convection in a rotating fluid annulus. Geophys. Astrophys. Fluid Dyn. 19, 293299 (referred to as H82).Google Scholar
Hignett, P. 1985 Characteristics of amplitude vacillation in a differentially heated rotating fluid annulus. Geophys. Astrophys. Fluid Dyn. 31, 247281 (referred to as H85).Google Scholar
Hignett, P., White, A. A., Carter, R. D., Jackson, W. D. N. & Small, R. M. 1985 A comparison of laboratory measurements and numerical simulations of baroclinic wave flows in a rotating cylindrical annulus. Q. J. R. Met. Soc. 111, 131154 (referred to herein as HWCJS).Google Scholar
James, I. N., Jonas, P. R. & Farnell, L. 1981 A combined laboratory and numerical study of fully developed steady baroclinic waves in a cylindrical annulus. Q. J. R. Met. Soc. 107, 5178.Google Scholar
Jonas, P. R. 1981 Some effects of boundary conditions and fluid properties on vacillation in thermally-driven rotating flow in an annulus. Geophys. Astrophys. Fluid Dyn. 18, 123.Google Scholar
Langford, W. F., Arneodo, A., Coullet, P., Tresser, C. & Coste, J. 1980 A mechanism for a soft mode instability. Phys. Lett. 78A, 1114.Google Scholar
Libchaber, A., Fauve, S. & Laroche, C. 1983 Two-parameter study of the routes to chaos. Physica 7D, 7384.Google Scholar
Lorenz, E. N. 1963a Deterministic non-periodic flow. J. Atmos. Sci. 20, 130141.Google Scholar
Lorenz, E. N. 1963b The mechanics of vacillation. J. Atmos. Sci. 20, 448464.Google Scholar
Mayer-Kress, G. (Ed.) 1986 Dimensions and Entropies in Chaotic Systems. Springer.
Nese, J. M., Dutton, J. A. & Wells, R. 1987 Calculated attractor dimensions for low-order spectral models. J. Atmos. Sci. 44, 19501972.Google Scholar
Ohlsen, D. R. & Hart, J. E. 1989a The transition to baroclinic chaos on the β-plane. J. Fluid Mech. 203, 2350.Google Scholar
Ohlsen, D. R. & Hart, J. E. 1989b Nonlinear interference vacillation. Geophys. Astrophys. Fluid Dyn. 45, 213235.Google Scholar
Pedlosky, J. 1970 Finite amplitude baroclinic waves. J. Atmos. Sci. 27, 1530.Google Scholar
Pedlosky, J. 1971 Finite amplitude baroclinic waves with small dissipation. J. Atmos. Sci. 28, 587597.Google Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.
Pedlosky, J. & Frenzen, C. 1980 Chaotic and periodic behavior of finite-amplitude baroclinic waves. J. Atmos. Sci. 37, 11771196.Google Scholar
Pfeffer, R. L., Buzyna, G. & Kung, R. 1980 Time-dependent modes of behavior of thermally driven rotating fluids. J. Atmos. Sci. 37, 21292149.Google Scholar
Rand, D. 1982 Dynamics and symmetry: predictions for modulated waves in rotating fluids. Arch. Rat. Mech. Anal. 79, 137.Google Scholar
Smith, L. 1988 Intrinsic limits on dimension calculations. Phys. Lett. 133A, 283288.Google Scholar
Takens, F. 1980 Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence (ed. D. Rand & L. S. Young). Lecture Notes in Mathematics, vol. 898, pp. 366381. Springer.
Tavakol, R. K. & Tworkowski, A. S. 1988 Fluid intermittency in low dimensional deterministic systems. Phys. Lett. 126, 318324.Google Scholar
Weng, H.-Y., Barcilon, A. & Magnan, J. F. 1986 Transitions between baroclinic flow regimes. J. Atmos. Sci. 43, 17601777.Google Scholar
White, H. D. & Koschmieder, E. L. 1981 Convection in a rotating, laterally heated annulus. Pattern velocities and amplitude oscillations. Geophys. Astrophys. Fluid Dyn. 18, 301320.Google Scholar
Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. 1985 Determining Lyapunov exponents from a time series. Physica 16D, 285317.Google Scholar