Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T16:49:56.388Z Has data issue: false hasContentIssue false

Propagation of surface gravity waves over a rectangular submerged bar

Published online by Cambridge University Press:  26 April 2006

Vincent Rey
Affiliation:
Département de Physique des Systèmes Désordonnés, SETT, URA 1168 du CNRS, Université de Provence, Centre de Saint-Jérôme, Case 161, 13397 Marseille Cedex 13, France
Max Belzons
Affiliation:
Département de Physique des Systèmes Désordonnés, SETT, URA 1168 du CNRS, Université de Provence, Centre de Saint-Jérôme, Case 161, 13397 Marseille Cedex 13, France
Elisabeth Guazzelli
Affiliation:
Département de Physique des Systèmes Désordonnés, SETT, URA 1168 du CNRS, Université de Provence, Centre de Saint-Jérôme, Case 161, 13397 Marseille Cedex 13, France Permanent address: Laboratoire de Physique et Mécanique des Milieux Héterogènes, UA 857 du CNRS, Groupe Hydrodynamique et Mécanique Physique, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France.

Abstract

Experiments on the propagation of linear and weakly nonlinear gravity waves over a rectangular submerged bar were undertaken through very careful measurements in a wave tank. Effects arising from the finite amplitude of the surface wave and those coming from the generation of vortices around bar edges were examined. Experimental data are compared with results of two theoretical models. The first model was derived from Takano (1960) and Kirby & Dalrymple's (1983) work and the second model was developed by Devillard, Dunlop & Souillard (1988) using the renormalized transfer matrix introduced by Miles (1967).

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartholomeusz, E. F. 1958 The reflexion of long waves at a step. Proc. Camb. Phil. Soc. 54, 106118.Google Scholar
Belzons, M., Devillard, P., Dunlop, F., Guazzelli, E., Parodi, O. & Souillard, B. 1987 Localization of surface wave on rough bottom: Theories and experiments. Europhys. Lett. 4 (8), 909914.Google Scholar
Belzons, M., Guazzelli, E. & Parodi, O. 1988 Gravity wave on a rough bottom: experimental evidence of one-dimensional localization. J. Fluid Mech. 186, 539558.Google Scholar
Davies, A. G. & Heathershaw, A. D. 1983 Surface wave propagating over sinusoidally varying topography: theory and observation. Inst. Oceanogr. Sci. Rep. 159.Google Scholar
Davies, A. G. & Heathershaw, A. D. 1984 Surface wave propagating over sinusoidally varying topography. J. Fluid Mech. 144, 419443.Google Scholar
Devillard, P., Dunlop, F. & Souillard, B. 1988 Localization of gravity waves on a channel with random bottom. J. Fluid Mech. 186, 521538.Google Scholar
Guazzelli, E., Rey, V. & Belzons, M. 1991 Higher-order resonant interactions between gravity surface waves and periodic beds. J. Fluid Mech. (submitted).Google Scholar
Jeffreys, H. 1944 Motion of waves in shallow water. Note on the offshore bar problem and reflexion from a bar. London: Ministry of Supply Wave Report 3.Google Scholar
Jolas, P. 1960 Passage de la houle sur un seuil. La Houille Blanche 2, 148152.Google Scholar
Kirby, J. T. & Dalrymple, R. A. 1983 Propagation of obliquely incident water waves over a trench. J. Fluid Mech. 133, 4763.Google Scholar
Lamb, H. 1932 Hydrodynamics (6th edn). Dover.
Mei, C. C. & Black, J. L. 1969 Scattering of surface wave by rectangular obstacles in waters of finite depth. J. Fluid Mech. 38, 499511.Google Scholar
Miles, J. W. 1967 Surface-wave scattering matrix for a shelf. J. Fluid Mech. 28, 755767.Google Scholar
Newman, J. N. 1965a Propagation of water waves past long dimensional obstacles. J. Fluid Mech. 23, 2329.Google Scholar
Newman, J. N. 1965b Propagation of water waves over an infinite step. J. Fluid Mech. 23, 399415.Google Scholar
O'Hare, T. & Davies, A. G.1990 A laboratory study of sand bar evolution. J. Coastal Res.Google Scholar
Olgilvie, T. F. 1960 Propagation of waves over an obstacle in water of finite depth. University of California, Inst. Engng Res. Rep. 82–14.Google Scholar
Rey, V. 1991 Propagation and local behaviour of normally incident gravity waves over varying topography. Eur. J. Mech. (Fluid) (in press).Google Scholar
Takano, K. 1960 Effets d'un obstacle paralleAleApipeAdique sur la propagation de la houle. La Houille Blanche 15, 247267.Google Scholar